1887

Abstract

A mesophilic, strictly microaerophilic, chemosynthetic bacterium, designated strain P2D, was isolated from the sediment of an active shallow-water hydrothermal vent in Paleochori Bay, on the Greek island of Milos. The cells were Gram-staining-negative rods that measured approximately 0.8–1.3 µm in length and 0.4–0.5 µm in width. Strain P2D grew at 20–50 °C (optimum 35 °C), with 1.0–5.0 % (w/v) NaCl (optimum 3.0 %), and at pH 4.5–8.0 (optimum pH 5.5). The generation time under optimal conditions was 1.1 h. Growth occurred under chemolithoautotrophic conditions with and CO as the energy and carbon sources, respectively. Oxygen (5 %) was used as sole terminal electron acceptor. No growth was observed in the presence of acetate, formate, lactate, tryptone or peptone. Chemolithoheterotrophic growth occurred when -glucose or sucrose were present as carbon sources. None of the organic compounds tested was used as an electron donor. The genomic DNA G+C content of the novel strain was 44.9 mol%. In a phylogenetic analysis based on 16S rRNA gene sequences, strain P2D was found to be most closely related to DSM 13453 (92.8% sequence similarity). Based on the phylogenetic, physiological and chemotaxonomic evidence, strain P2D represents a novel species of a new genus within the class of the family , for which the name gen. nov., sp. nov. is proposed. The type strain of the type species is P2D ( = DSM 24963 = JCM 17795).

Funding
This study was supported by the:
  • International Mobility Fellowship (Award 2288/2009)
  • Agenzia Regionale per il Diritto allo Studio Universitario (ADISU)
  • Regione Puglia
  • United States National Science Foundation (Award OCE 11-24141 and MCB 08-43678)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.040808-0
2012-12-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/62/12/3060.html?itemId=/content/journal/ijsem/10.1099/ijs.0.040808-0&mimeType=html&fmt=ahah

References

  1. Brinkhoff T., Muyzer G. 1997; Increased species diversity and extended habitat range of sulfur-oxidizing Thiomicrospira spp.. Appl Environ Microbiol 63:3789–3796[PubMed]
    [Google Scholar]
  2. Brinkhoff T., Muyzer G., Wirsen C. O., Kuever J. 1999a; Thiomicrospira chilensis sp. nov., a mesophilic obligately chemolithoautotrophic sulphur-oxidizing bacterium isolated from a Thioploca mat. Int J Syst Bacteriol 49:875–879 [View Article][PubMed]
    [Google Scholar]
  3. Brinkhoff T., Sievert S. M., Kuever J., Muyzer G. 1999b; Distribution and diversity of sulfur-oxidizing Thiomicrospira spp. at a shallow-water hydrothermal vent in the Aegean Sea (Milos, Greece). Appl Environ Microbiol 65:3843–3849[PubMed]
    [Google Scholar]
  4. Chun J., Lee J. H., Jung Y., Kim M., Kim S., Kim B. K., Lim Y. W. 2007; EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57:2259–2261 [View Article][PubMed]
    [Google Scholar]
  5. Crespo-Medina M., Chatziefthimiou A., Cruz-Matos R., Pérez-Rodríguez I., Barkay T., Lutz R. A., Starovoytov V., Vetriani C. 2009; Salinisphaera hydrothermalis sp. nov., a mesophilic, halotolerant, facultatively autotrophic, thiosulfate-oxidizing gammaproteobacterium from deep-sea hydrothermal vents, and emended description of the genus Salinisphaera . Int J Syst Evol Microbiol 59:1497–1503 [View Article][PubMed]
    [Google Scholar]
  6. Dando P. R., Thomm M., Arab H. other authors 1998; Microbiology of shallow hydrothermal sites off Palaeochori Bay, Milos (Hellenic Volcanic Arc). Cah Biol Mar 39:369–372
    [Google Scholar]
  7. Dando P. R., Aliani S., Arab H., Bianchi C. N., Brehmer M., Cocito S., Fowlers S. W., Gundersen J., Hooper L. E. other authors 2000; Hydrothermal studies in the Aegean Sea. Phys Chem Earth Part B 25:1–8 [View Article]
    [Google Scholar]
  8. De Soete G. 1983; A least squares algorithm for fitting additive trees to proximity data. Psychometrica 48:621–626 [View Article]
    [Google Scholar]
  9. Galtier N., Gouy M., Gautier C. 1996; seaview and phylo_win: two graphic tools for sequence alignment and molecular phylogeny. Comput Appl Biosci 12:543–548[PubMed]
    [Google Scholar]
  10. Guindon S., Dufayard J. -F., Lefort V., Anisimova M., Hordijk W., Gascuel O. 2010; New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321[PubMed] [CrossRef]
    [Google Scholar]
  11. Inagaki F., Takai K., Nealson K. H., Horikoshi K. 2004; Sulfurovum lithotrophicum gen. nov., sp. nov., a novel sulfur-oxidizing chemolithoautotroph within the ϵ-Proteobacteria isolated from Okinawa Trough hydrothermal sediments. Int J Syst Evol Microbiol 54:1477–1482 [View Article][PubMed]
    [Google Scholar]
  12. Jannasch H. W., Wirsen C. O., Nelson D. C., Robertson L. A. 1985; Thiomicrospira crunogena sp. nov., a colorless, sulfur-oxidizing bacterium from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 35:422–424
    [Google Scholar]
  13. Kuenen J. G., Veldkamp H. 1972; Thiomicrospira pelophila, gen. n., sp. n., a new obligately chemolithotrophic colourless sulfur bacterium. Antonie van Leeuwenhoek 38:241–256 [View Article][PubMed]
    [Google Scholar]
  14. Kuykendall L. D., Roy M. A., O’Neill J. J., Devine T. E. 1988; Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum . Int J Syst Bacteriol 38:358–361 [View Article]
    [Google Scholar]
  15. Mesbah M., Premachandran U., Whitman W. 1989; Precise measurement of the G + C content of deoxyribonucleic acid by high performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [View Article]
    [Google Scholar]
  16. Muyzer G., Teske A., Wirsen C. O., Jannasch H. W. 1995; Phylogenetic relationships of Thiomicrospira species and their identification in deep-sea hydrothermal vent samples by denaturing gradient gel electrophoresis of 16S rDNA fragments. Arch Microbiol 164:165–172 [View Article][PubMed]
    [Google Scholar]
  17. Nakagawa S., Takai K. 2008; Deep-sea vent chemoautotrophs: diversity, biochemistry and ecological significance. FEMS Microbiol Ecol 65:1–14 [View Article][PubMed]
    [Google Scholar]
  18. Perrière G., Gouy M. 1996; WWW-query: an on-line retrieval system for biological sequence banks. Biochimie 78:364–369 [View Article][PubMed]
    [Google Scholar]
  19. Ruby E. G., Jannasch H. W. 1982; Physiological characteristics of Thiomicrospira sp. strain L-12 isolated from deep-sea hydrothermal vents. J Bacteriol 149:161–165[PubMed]
    [Google Scholar]
  20. Schulz H. N., Brinkhoff T., Ferdelman T. G., Mariné M. H., Teske A., Jørgensen B. B. 1999; Dense populations of a giant sulfur bacterium in Namibian shelf sediments. Science 284:493–495 [View Article][PubMed]
    [Google Scholar]
  21. Sievert S. M., Brinkhoff T., Muyzer G., Ziebis W., Kuever J. 1999; Spatial heterogeneity of bacterial populations along an environmental gradient at a shallow submarine hydrothermal vent near Milos Island (Greece). Appl Environ Microbiol 65:3834–3842[PubMed]
    [Google Scholar]
  22. Sievert S. M., Kuever J., Muyzer G. 2000; Identification of 16S ribosomal DNA-defined bacterial populations at a shallow submarine hydrothermal vent near Milos Island (Greece). Appl Environ Microbiol 66:3102–3109 [View Article][PubMed]
    [Google Scholar]
  23. Sorokin D. Y., Lysenko A. M., Mityushina L. L., Tourova T. P., Jones B. E., Rainey F. A., Robertson L. A., Kuenen G. J. 2001; Thioalkalimicrobium aerophilum gen. nov., sp. nov. and Thioalkalimicrobium sibericum sp. nov., and Thioalkalivibrio versutus gen. nov., sp. nov., Thioalkalivibrio nitratis sp. nov., novel and Thioalkalivibrio denitrificancs sp. nov., novel obligately alkaliphilic and obligately chemolithoautotrophic sulfur-oxidizing bacteria from soda lakes. Int J Syst Evol Microbiol 51:565–580[PubMed]
    [Google Scholar]
  24. Stockdale A., Davison W., Zhang H. 2009; Micro-scale biogeochemical heterogeneity in sediments: a review of available technology and observed evidence. Earth Sci Rev 92:81–97 [View Article]
    [Google Scholar]
  25. Takai K., Hirayama H., Nakagawa T., Suzuki Y., Nealson K. H., Horikoshi K. 2004; Thiomicrospira thermophila sp. nov., a novel microaerobic, thermotolerant, sulfur-oxidizing chemolithomixotroph isolated from a deep-sea hydrothermal fumarole in the TOTO caldera, Mariana Arc, Western Pacific. Int J Syst Evol Microbiol 54:2325–2333 [View Article][PubMed]
    [Google Scholar]
  26. Teske A., Brinkhoff T., Muyzer G., Moser D. P., Rethmeier J., Jannasch H. W. 2000; Diversity of thiosulfate-oxidizing bacteria from marine sediments and hydrothermal vents. Appl Environ Microbiol 66:3125–3133 [View Article][PubMed]
    [Google Scholar]
  27. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [View Article][PubMed]
    [Google Scholar]
  28. Tindall B. J. 1990a; A comparative-study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 13:128–130 [View Article]
    [Google Scholar]
  29. Tindall B. J. 1990b; Lipid composition of Halobacterium lacusprofundi . FEMS Microbiol Lett 66:199–202 [View Article]
    [Google Scholar]
  30. Tindall B. J., Rosselló-Móra R., Busse H. J., Ludwig W., Kämpfer P. 2010; Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol 60:249–266 [View Article][PubMed]
    [Google Scholar]
  31. Vetriani C., Speck M. D., Ellor S. V., Lutz R. A., Starovoytov V. 2004; Thermovibrio ammonificans sp. nov., a thermophilic, chemolithotrophic, nitrate-ammonifying bacterium from deep-sea hydrothermal vents. Int J Syst Evol Microbiol 54:175–181 [View Article][PubMed]
    [Google Scholar]
  32. Voordeckers J. W., Starovoytov V., Vetriani C. 2005; Caminibacter mediatlanticus sp. nov., a thermophilic, chemolithoautotrophic, nitrate-ammonifying bacterium isolated from a deep-sea hydrothermal vent on the Mid-Atlantic Ridge. Int J Syst Evol Microbiol 55:773–779 [View Article][PubMed]
    [Google Scholar]
  33. Wenzhöfer F., Holby O., Glud R. N. A., Nielsen H. K., Gundersen J. K. 2000; In situ microsensor studies of a shallow water hydrothermal vent at Milos, Greece . Mar Chem 69:43–54 [View Article]
    [Google Scholar]
  34. Wirsen C. O., Brinkhoff T., Kuever J., Muyzer G., Molyneaux S., Jannasch H. W. 1998; Comparison of a new Thiomicrospira strain from the mid-Atlantic ridge with known hydrothermal vent isolates. Appl Environ Microbiol 64:4057–4059[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.040808-0
Loading
/content/journal/ijsem/10.1099/ijs.0.040808-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error