1887

Abstract

A novel Gram-staining-negative, aerobic, non-motile, yellow-to-orange carotenoid-type-pigmented and rod-shaped bacterium, designated strain WP25, was isolated from the intestine of a comb pen shell, , which was collected from the South Sea near Yeosu in Korea. The isolate grew optimally at 20 °C, at pH 7 and with 2 % (w/v) NaCl. 16S rRNA gene sequence analysis showed that strain WP25 belonged to the genus in the family and the highest sequence similarity was shared with the type strain of (98.5 %). The major cellular fatty acids were iso-C, anteiso-C, Cω6 and iso-C 3-OH. The main respiratory quinone was menaquinone MK-6. The polar lipids of strain WP25 were phosphatidylethanolamine, two unidentified aminolipids, an unidentified phospholipid and four unidentified lipids. The genomic DNA G+C content was 31.2 mol%. DNA–DNA hybridization experiments indicated <12.6 % genomic relatedness with closely related strains. Based on phylogenetic, phenotypic and genotypic analyses, strain WP25 represents a novel species in the genus , for which the name sp. nov. is proposed, with the type strain WP25 ( = KACC 17473 = JCM 19202).

Funding
This study was supported by the:
  • Mid-career Researcher Program through the National Research Foundation of Korea (Award 2012-0008806)
  • National Institute of Biological Resources (NIBR), funded by the Ministry of Environment (MOE) of the Republic of Korea (Award 2013-02-001)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.060889-0
2014-05-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/5/1654.html?itemId=/content/journal/ijsem/10.1099/ijs.0.060889-0&mimeType=html&fmt=ahah

References

  1. Bae J. W., Rhee S. K., Park J. R., Chung W. H., Nam Y. D., Lee I., Kim H., Park Y. H. ( 2005 ). Development and evaluation of genome-probing microarrays for monitoring lactic acid bacteria. . Appl Environ Microbiol 71, 88258835. [View Article] [PubMed]
    [Google Scholar]
  2. Benson H. J. ( 1994 ). Microbiological Applications: a Laboratory Manual in General Microbiology, , 6th edn.. Dubuque, IA:: W. C. Brown;.
    [Google Scholar]
  3. Bernardet J.-F. ( 2011 ). Family I. Flavobacteriaceae Reichenbach 1992. . In Bergey’s Manual of Systematic Bacteriology, , 2nd edn., vol. 4, pp. 106111. Edited by Krieg N. R., Ludwig W., Whitman W. B., Hedlund B. P., Paster B. J., Staley J. T., Ward N., Brown D., Parte A. . New York:: Springer;.
    [Google Scholar]
  4. Bernardet J. F., Nakagawa Y., Holmes B. Subcommittee on the taxonomy of Flavobacterium and Cytophaga-like bacteria of the International Committee on Systematics of Prokaryotes ( 2002 ). Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. . Int J Syst Evol Microbiol 52, 10491070. [View Article] [PubMed]
    [Google Scholar]
  5. Chang H. W., Nam Y. D., Jung M. Y., Kim K. H., Roh S. W., Kim M. S., Jeon C. O., Yoon J. H., Bae J. W. ( 2008 ). Statistical superiority of genome-probing microarrays as genomic DNA-DNA hybridization in revealing the bacterial phylogenetic relationship compared to conventional methods. . J Microbiol Methods 75, 523530. [View Article] [PubMed]
    [Google Scholar]
  6. Collins M. D., Jones D. ( 1981a ). Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication. . Microbiol Rev 45, 316354.[PubMed]
    [Google Scholar]
  7. Collins M. D., Jones D. ( 1981b ). A note on the separation of natural mixtures of bacterial ubiquinones using reverse-phase partition thin-layer chromatography and high performance liquid chromatography. . J Appl Bacteriol 51, 129134. [View Article] [PubMed]
    [Google Scholar]
  8. Felsenstein J. ( 1981 ). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17, 368376. [View Article] [PubMed]
    [Google Scholar]
  9. Fitch W. M. ( 1971 ). Toward defining the course of evolution: minimum change for a specific tree topology. . Syst Zool 20, 406416. [View Article]
    [Google Scholar]
  10. Fukui Y., Abe M., Kobayashi M., Saito H., Oikawa H., Yano Y., Satomi M. ( 2013 ). Polaribacter porphyrae sp. nov., isolated from the red alga Porphyra yezoensis, and emended descriptions of the genus Polaribacter and two Polaribacter species. . Int J Syst Evol Microbiol 63, 16651672. [View Article] [PubMed]
    [Google Scholar]
  11. Gonzalez J. M., Saiz-Jimenez C. ( 2002 ). A fluorimetric method for the estimation of G+C mol% content in microorganisms by thermal denaturation temperature. . Environ Microbiol 4, 770773. [View Article] [PubMed]
    [Google Scholar]
  12. Gosink J. J., Woese C. R., Staley J. T. ( 1998 ). Polaribacter gen. nov., with three new species, P. irgensii sp. nov., P. franzmannii sp. nov. and P. filamentus sp. nov., gas vacuolate polar marine bacteria of the Cytophaga-Flavobacterium-Bacteroides group and reclassification of ‘Flectobacillus glomeratus’ as Polaribacter glomeratus comb. nov.. Int J Syst Bacteriol 48, 223235. [View Article] [PubMed]
    [Google Scholar]
  13. Goszczynska T., Serfontein J. J. ( 1998 ). Milk-Tween agar, a semiselective medium for isolation and differentiation of Pseudomonas syringae pv. syringae, Pseudomonas syringae pv. phaseolicola and Xanthomonas axonopodis pv. phaseoli. . J Microbiol Methods 32, 6572. [View Article]
    [Google Scholar]
  14. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H. & other authors ( 2012 ). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62, 716721. [View Article] [PubMed]
    [Google Scholar]
  15. Kim B. C., Oh H. W., Kim H., Park D. S., Hong S. G., Lee H. K., Bae K. S. ( 2013 ). Polaribacter sejongensis sp. nov., isolated from Antarctic soil, and emended descriptions of the genus Polaribacter, Polaribacter butkevichii and Polaribacter irgensii . . Int J Syst Evol Microbiol 63, 40004005. [View Article] [PubMed]
    [Google Scholar]
  16. Lane D. J. ( 1991 ). 16S/23S rRNA sequencing. . In Nucleic Acid Techniques in Bacterial Systematics, pp. 115175. Edited by Stackebrandt E., Goodfellow M. . New York:: Wiley;.
    [Google Scholar]
  17. Lee Y. S., Lee D. H., Kahng H. Y., Sohn S. H., Jung J. S. ( 2011 ). Polaribacter gangjinensis sp. nov., isolated from seawater. . Int J Syst Evol Microbiol 61, 14251429. [View Article] [PubMed]
    [Google Scholar]
  18. Loy A., Schulz C., Lücker S., Schöpfer-Wendels A., Stoecker K., Baranyi C., Lehner A., Wagner M. ( 2005 ). 16S rRNA gene-based oligonucleotide microarray for environmental monitoring of the betaproteobacterial order “Rhodocyclales”. . Appl Environ Microbiol 71, 13731386. [View Article] [PubMed]
    [Google Scholar]
  19. MIDI ( 1999 ). Sherlock Microbial Identification System Operating Manual, version 3.0. Newark, DE:: MIDI, Inc;.
    [Google Scholar]
  20. Nedashkovskaya O. I., Kim S. B., Lysenko A. M., Kalinovskaya N. I., Mikhailov V. V., Kim I. S., Bae K. S. ( 2005 ). Polaribacter butkevichii sp. nov., a novel marine mesophilic bacterium of the family Flavobacteriaceae . . Curr Microbiol 51, 408412. [View Article] [PubMed]
    [Google Scholar]
  21. Nedashkovskaya O. I., Kukhlevskiy A. D., Zhukova N. V. ( 2013 ). Polaribacter reichenbachii sp. nov.: a new marine bacterium associated with the green alga Ulva fenestrata . . Curr Microbiol 66, 1621. [View Article] [PubMed]
    [Google Scholar]
  22. Rochelle P. A., Fry J. C., Parkes R. J., Weightman A. J. ( 1992 ). DNA extraction for 16S rRNA gene analysis to determine genetic diversity in deep sediment communities. . FEMS Microbiol Lett 79, 5965. [View Article] [PubMed]
    [Google Scholar]
  23. Saitou N., Nei M. ( 1987 ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4, 406425.[PubMed]
    [Google Scholar]
  24. Sasser M. ( 1990 ). Identification of bacteria by gas chromatography of cellular fatty acids, Technical Note 101. Newark, DE:: MIDI Inc;.
    [Google Scholar]
  25. Schmidt K., Connor A., Britton G. ( 1994 ). Analysis of pigments: carotenoids and related polyenes. . In Chemical Methods in Prokaryotic Systematics, pp. 403461. Edited by Goodfellow M., O’Donnell A. G. . New York:: Wiley;.
    [Google Scholar]
  26. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. ( 2011 ). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28, 27312739. [View Article] [PubMed]
    [Google Scholar]
  27. Teather R. M., Wood P. J. ( 1982 ). Use of Congo red-polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen. . Appl Environ Microbiol 43, 777780.[PubMed]
    [Google Scholar]
  28. Thompson J. D., Higgins D. G., Gibson T. J. ( 1994 ). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. . Nucleic Acids Res 22, 46734680. [View Article] [PubMed]
    [Google Scholar]
  29. Tindall B. J. ( 1990 ). Lipid composition of Halobacterium lacusprofundi . . FEMS Microbiol Lett 66, 199202. [View Article]
    [Google Scholar]
  30. Tittsler R. P., Sandholzer L. A. ( 1936 ). The use of semi-solid agar for the detection of bacterial motility. . J Bacteriol 31, 575580.[PubMed]
    [Google Scholar]
  31. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. & other authors ( 1987 ). Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37, 463464. [View Article]
    [Google Scholar]
  32. Xin H., Itoh T., Zhou P., Suzuki K., Kamekura M., Nakase T. ( 2000 ). Natrinema versiforme sp. nov., an extremely halophilic archaeon from Aibi salt lake, Xinjiang, China. . Int J Syst Evol Microbiol 50, 12971303. [View Article] [PubMed]
    [Google Scholar]
  33. Yoon J. H., Kang S. J., Oh T. K. ( 2006 ). Polaribacter dokdonensis sp. nov., isolated from seawater. . Int J Syst Evol Microbiol 56, 12511255. [View Article] [PubMed]
    [Google Scholar]
  34. Yurimoto Y., Watanabe Y., Nasu H., Tobase N., Matsui S., Yoshioka N. ( 2003 ). Relationship between environmental food and glycogen contents in pen shells. . In Proceedings of the 32nd US−Japan Symposium on Aquaculture, Santa Barbara, CA, USA:, 16−23 November 2003, p. 12-229.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.060889-0
Loading
/content/journal/ijsem/10.1099/ijs.0.060889-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error