1887

Abstract

A taxonomic study was carried out on bacterial strain H3, which was isolated from the toxic marine diatom . Cells of strain H3 were Gram-stain-negative, rod-shaped, non-motile and capable of reducing nitrate to nitrite, but not denitrification. Growth was observed at NaCl concentrations of 1–9 %, pH 6–12 and 10–37 °C. It was unable to degrade aesculin or gelatin. The dominant fatty acids (>10 %) were Cω7/ω6 (summed feature 8) and C. The respiratory ubiquinone was Q10. The major lipids were phosphatidylethanolamine, phosphatidylglycerol, an aminolipid and one unknown lipid, and the minor lipids were two phospholipids and three unknown lipids. The G+C content of the chromosomal DNA was 61.7 mol%. 16S rRNA gene sequence comparison showed that strain H3 was related most closely to DSW-25 (97.3 % similarity) and levels of similarity with other species of the genus were 95.1–96.9 %. The mean (±) DNA–DNA hybridization value between strain H3 and DSW-25 was 18.0±2.25 %. The average nucleotide identity between strain H3 and DSW-25 was 70.45 %. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain H3 formed a separate clade close to the genus and was distinguishable from phylogenetically related species by differences in several phenotypic properties. On the basis of the phenotypic and phylogenetic data, strain H3 represents a novel species of the genus , for which the name is proposed (type strain H3 = DSM 26824 = MCCC 1A00686).

Funding
This study was supported by the:
  • National Basic Research Priority Program of China (Award 201005015-5 and 2010CB428704)
  • Public Science and Technology Research Funds Projects of Ocean (Award 201205031-03)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.064972-0
2015-01-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/1/95.html?itemId=/content/journal/ijsem/10.1099/ijs.0.064972-0&mimeType=html&fmt=ahah

References

  1. Auch A. F., Klenk H. P., Göker M. ( 2010a ). Standard operating procedure for calculating genome-to-genome distances based on high-scoring segment pairs. . Stand Genomic Sci 2, 142148. [View Article] [PubMed]
    [Google Scholar]
  2. Auch A. F., von Jan M., Klenk H. P., Göker M. ( 2010b ). Digital DNA–DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. . Stand Genomic Sci 2, 117134. [View Article] [PubMed]
    [Google Scholar]
  3. Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K. (editors) ( 1995 ). Short Protocols in Molecular Biology: a Compendium of Methods from Current Protocols in Molecular Biology, , 3rd edn.. New York:: Wiley;.
    [Google Scholar]
  4. Bernardet J. F., Nakagawa Y., Holmes B. Subcommittee on the taxonomy of Flavobacterium and Cytophaga-like bacteria of the International Committee on Systematics of Prokaryotes ( 2002 ). Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. . Int J Syst Evol Microbiol 52, 10491070. [View Article] [PubMed]
    [Google Scholar]
  5. Cowan S. T., Steel K. J. ( 1993 ). Manual for the Identification of Medical Bacteria, , 3rd edn.. London:: Cambridge University Press;.
    [Google Scholar]
  6. Felsenstein J. ( 1981 ). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17, 368376. [View Article] [PubMed]
    [Google Scholar]
  7. Fukui Y., Abe M., Kobayashi M., Shimada Y., Saito H., Oikawa H., Yano Y., Satomi M. ( 2014 ). Sulfitobacter porphyrae sp. nov., isolated from the red alga Porphyra yezoensis . . Int J Syst Evol Microbiol 64, 438443. [View Article] [PubMed]
    [Google Scholar]
  8. Goris J., Konstantinidis K. T., Klappenbach J. A., Coenye T., Vandamme P., Tiedje J. M. ( 2007 ). DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. . Int J Syst Evol Microbiol 57, 8191. [View Article] [PubMed]
    [Google Scholar]
  9. Guillard R. R. L. ( 1975 ). Culture of phytoplankton for feeding marine invertebrates. . In Culture of Marine Invertebrate Animals, pp. 2960. Edited by Smith W. L., Canley M. H. . New York:: Plenum Press;. [View Article]
    [Google Scholar]
  10. Ivanova E. P., Gorshkova N. M., Sawabe T., Zhukova N. V., Hayashi K., Kurilenko V. V., Alexeeva Y., Buljan V., Nicolau D. V. et al. ( 2004 ). Sulfitobacter delicatus sp. nov. and Sulfitobacter dubius sp. nov., respectively from a starfish (Stellaster equestris) and sea grass (Zostera marina). . Int J Syst Evol Microbiol 54, 475480. [View Article] [PubMed]
    [Google Scholar]
  11. Labrenz M., Tindall B. J., Lawson P. A., Collins M. D., Schumann P., Hirsch P. ( 2000 ). Staleya guttiformis gen. nov., sp. nov. and Sulfitobacter brevis sp. nov., α-3-Proteobacteria from hypersaline, heliothermal and meromictic antarctic Ekho Lake. . Int J Syst Evol Microbiol 50, 303313. [View Article] [PubMed]
    [Google Scholar]
  12. Lai Q., Yuan J., Wu C., Shao Z. ( 2009 ). Oceanibaculum indicum gen. nov., sp. nov., isolated from deep seawater of the Indian Ocean. . Int J Syst Evol Microbiol 59, 17331737. [View Article] [PubMed]
    [Google Scholar]
  13. Liu C., Shao Z. ( 2005 ). Alcanivorax dieselolei sp. nov., a novel alkane-degrading bacterium isolated from sea water and deep-sea sediment. . Int J Syst Evol Microbiol 55, 11811186. [View Article] [PubMed]
    [Google Scholar]
  14. Meier-Kolthoff J. P., Auch A. F., Klenk H. P., Göker M. ( 2013 ). Genome sequence-based species delimitation with confidence intervals and improved distance functions. . BMC Bioinformatics 14, 60. [View Article] [PubMed]
    [Google Scholar]
  15. Park J. R., Bae J. W., Nam Y. D., Chang H. W., Kwon H. Y., Quan Z. X., Park Y. H. ( 2007 ). Sulfitobacter litoralis sp. nov., a marine bacterium isolated from the East Sea, Korea. . Int J Syst Evol Microbiol 57, 692695. [View Article] [PubMed]
    [Google Scholar]
  16. Pukall R., Buntefuss D., Frühling A., Rohde M., Kroppenstedt R. M., Burghardt J., Lebaron P., Bernard L., Stackebrandt E. ( 1999 ). Sulfitobacter mediterraneus sp. nov., a new sulfite-oxidizing member of the α-Proteobacteria. . Int J Syst Bacteriol 49, 513519. [View Article] [PubMed]
    [Google Scholar]
  17. Richter M., Rosselló-Móra R. ( 2009 ). Shifting the genomic gold standard for the prokaryotic species definition. . Proc Natl Acad Sci U S A 106, 1912619131. [View Article] [PubMed]
    [Google Scholar]
  18. Rzhetsky A., Nei M. ( 1992 ). A simple method for estimating and testing minimum evolution trees. . Mol Biol Evol 9, 945967.
    [Google Scholar]
  19. Rzhetsky A., Nei M. ( 1993 ). Theoretical foundation of the minimum-evolution method of phylogenetic inference. . Mol Biol Evol 10, 10731095.[PubMed]
    [Google Scholar]
  20. Saitou N., Nei M. ( 1987 ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4, 406425.[PubMed]
    [Google Scholar]
  21. Sasser M. ( 1990 ). Identification of bacteria by gas chromatography of cellular fatty acids . , MIDI Technical Note 101. Newark, DE: MIDI Inc.
    [Google Scholar]
  22. Sorokin D. Y. ( 1995 ). Sulfitobacter pontiacus gen. nov., sp. nov. – a new heterotrophic bacterium from the Black Sea, specialized on sulfite oxidation. . Microbiology 64, 295305. (English translation of Mikrobiologiya).
    [Google Scholar]
  23. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. ( 2011 ). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28, 27312739. [View Article] [PubMed]
    [Google Scholar]
  24. Wagner-Döbler I., Rheims H., Felske A., El-Ghezal A., Flade-Schröder D., Laatsch H., Lang S., Pukall R., Tindall B. J. ( 2004 ). Oceanibulbus indolifex gen. nov., sp. nov., a North Sea alphaproteobacterium that produces bioactive metabolites. . Int J Syst Evol Microbiol 54, 11771184. [View Article] [PubMed]
    [Google Scholar]
  25. Yoon J. H., Kang S. J., Oh T. K. ( 2007a ). Sulfitobacter marinus sp. nov., isolated from seawater of the East Sea in Korea. . Int J Syst Evol Microbiol 57, 302305. [View Article] [PubMed]
    [Google Scholar]
  26. Yoon J. H., Kang S. J., Lee M. H., Oh T. K. ( 2007b ). Description of Sulfitobacter donghicola sp. nov., isolated from seawater of the East Sea in Korea, transfer of Staleya guttiformis Labrenz et al. 2000 to the genus Sulfitobacter as Sulfitobacter guttiformis comb. nov. and emended description of the genus Sulfitobacter . . Int J Syst Evol Microbiol 57, 17881792. [View Article] [PubMed]
    [Google Scholar]
  27. ZoBell C. E. ( 1941 ). Studies on marine bacteria: I. The cultural requirements of heterotrophic aerobes. . J Mar Res 4, 4275.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.064972-0
Loading
/content/journal/ijsem/10.1099/ijs.0.064972-0
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error