1887

Abstract

In the past, bacterial phylogeny relied almost exclusively on 16S rRNA gene sequence analysis. More recently, multilocus sequence analysis has been used to infer organismal phylogenies. In this study, the chaperone gene was investigated as a marker for phylogeny studies in alphaproteobacteria. Preliminary analysis of G+C contents and G+C3s contents (the G+C content of the synonymous third codon position) showed no clear evidence of horizontal transfer of this gene in proteobacteria. -based phylogenies were then analysed at three taxonomic levels: the , the and the genus . Dendrograms based on DnaJ and 16S rRNA gene sequences revealed the same topology described previously for the . These results indicate that the DnaJ phylogenetic signal is able to reproduce the accepted relationships among the five classes of the . At a lower taxonomic level, using 20 alphaproteobacteria, the 16S rRNA gene-based phylogeny is distinct from the one based on DnaJ sequence analysis. Although the same clusters are generated, only the topology of the DnaJ tree is consistent with broader phylogenies from recent studies based on concatenated alignments of multiple core genes. For example, the DnaJ tree shows the two clusters within the as closely related, as expected, while the 16S rRNA gene-based phylogeny shows them as distantly related. In order to evaluate the phylogenetic performance of at the genus level, a multilocus analysis based on five housekeeping genes (, , , and ) was performed for ten species. In contrast to the 16S rRNA gene, the DnaJ sequence analysis generated a tree similar to the multilocus dendrogram. For identification of chickpea mesorhizobium isolates, a nucleotide sequence-based tree was used. Despite different topologies, 16S rRNA gene- and -based trees led to the same species identification. This study suggests that the gene is a good phylogenetic marker, particularly for the class , since its phylogeny is consistent with phylogenies based on multilocus approaches.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.2008/001636-0
2008-12-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/58/12/2839.html?itemId=/content/journal/ijsem/10.1099/ijs.0.2008/001636-0&mimeType=html&fmt=ahah

References

  1. Acinas, S. G., Marcelino, L. A., Klepac-Ceraj, V. & Polz, M. F.(2004). Divergence and redundancy of 16S rRNA sequences in genomes with multiple rrn operons. J Bacteriol 186, 2629–2635.[CrossRef] [Google Scholar]
  2. Alexandre, A., Laranjo, M. & Oliveira, S.(2006). Natural populations of chickpea rhizobia evaluated by antibiotic resistance profiles and molecular methods. Microb Ecol 51, 128–136.[CrossRef] [Google Scholar]
  3. Baldo, L., Bordenstein, S., Wernegreen, J. J. & Werren, J. H.(2006). Widespread recombination throughout Wolbachia genomes. Mol Biol Evol 23, 437–449. [Google Scholar]
  4. Bull, J. J., Huelsenbeck, J. P., Cunningham, C. W., Swofford, D. L. & Waddell, P. J.(1993). Partitioning and combining data in phylogenetic analysis. Syst Biol 42, 384–397.[CrossRef] [Google Scholar]
  5. Ciccarelli, F. D., Doerks, T., von Mering, C., Creevey, C. J., Snel, B. & Bork, P.(2006). Toward automatic reconstruction of a highly resolved tree of life. Science 311, 1283–1287.[CrossRef] [Google Scholar]
  6. Cilia, V., Lafay, B. & Christen, R.(1996). Sequence heterogeneities among 16S ribosomal RNA sequences, and their effect on phylogenetic analyses at the species level. Mol Biol Evol 13, 451–461.[CrossRef] [Google Scholar]
  7. Cunningham, C. W.(1997). Can three incongruence tests predict when data should be combined? Mol Biol Evol 14, 733–740.[CrossRef] [Google Scholar]
  8. Eisen, J. A.(1995). The RecA protein as a model molecule for molecular systematic studies of bacteria: comparison of trees of RecAs and 16S rRNAs from the same species. J Mol Evol 41, 1105–1123. [Google Scholar]
  9. Eisen, J. A.(2000). Horizontal gene transfer among microbial genomes: new insights from complete genome analysis. Curr Opin Genet Dev 10, 606–611.[CrossRef] [Google Scholar]
  10. Felsenstein, J.(2006).phylip (phylogeny inference package). Distributed by the author. Department of Genome Sciences, University of Washington, Seattle, USA.
  11. Frydman, J.(2001). Folding of newly translated proteins in vivo: the role of molecular chaperones. Annu Rev Biochem 70, 603–647.[CrossRef] [Google Scholar]
  12. Fukami-Kobayashi, K., Minezaki, Y., Tateno, Y. & Nishikawa, K.(2007). A tree of life based on protein domain organizations. Mol Biol Evol 24, 1181–1189.[CrossRef] [Google Scholar]
  13. Garrity, G. M., Bell, J. A. & Lilburn, T.(2005). Phylum XIV. Proteobacteria phyl. nov. In Bergey's Manual of Systematic Bacteriology, 2nd edn, vol. 2, part B, p. 1. Edited by D. J. Brenner, N. R. Krieg, J. T. Staley & G. M. Garrity. New York: Springer.
  14. Gaunt, M. W., Turner, S. L., Rigottier-Gois, L., Lloyd-Macgilp, S. A. & Young, J. P. W.(2001). Phylogenies of atpD and recA support the small subunit rRNA-based classification of rhizobia. Int J Syst Evol Microbiol 51, 2037–2048.[CrossRef] [Google Scholar]
  15. Gupta, R. S.(2000). The phylogeny of proteobacteria: relationships to other eubacterial phyla and eukaryotes. FEMS Microbiol Rev 24, 367–402.[CrossRef] [Google Scholar]
  16. Gupta, R. S.(2005). Protein signatures distinctive of alpha proteobacteria and its subgroups and a model for alpha-proteobacterial evolution. Crit Rev Microbiol 31, 101–135.[CrossRef] [Google Scholar]
  17. Gupta, R. S. & Sneath, P. H. A.(2007). Application of the character compatibility approach to generalized molecular sequence data: branching order of the proteobacterial subdivisions. J Mol Evol 64, 90–100.[CrossRef] [Google Scholar]
  18. Hall, T. A.(1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41, 95–98. [Google Scholar]
  19. Itoh, Y., Kawamura, Y., Kasai, H., Shah, M. M., Nhung, P. H., Yamada, M., Sun, X., Koyana, T., Hayashi, M. & other authors(2006).dnaJ and gyrB gene sequence relationship among species and strains of genus Streptococcus. Syst Appl Microbiol 29, 368–374.[CrossRef] [Google Scholar]
  20. Karlin, S., Theriot, J. & Mrazek, J.(2004). Comparative analysis of gene expression among low G+C gram-positive genomes. Proc Natl Acad Sci U S A 101, 6182–6187.[CrossRef] [Google Scholar]
  21. Kersters, K., De Vos, P., Gillis, M., Swings, J., Vandamme, P. & Stackebrandt, E.(2006). Introduction to the Proteobacteria. In The Prokaryotes: a Handbook on the Biology of Bacteria, 3rd edn, vol. 5, pp. 3–37. Edited by M. Dworkin, S. Falkow, E. Rosenberg, K. H. Schleifer and E. Stackebrandt. New York: Springer.
  22. Kimura, M.(1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16, 111–120.[CrossRef] [Google Scholar]
  23. Laranjo, M., Rodrigues, R., Alho, L. & Oliveira, S.(2001). Rhizobia of chickpea from southern Portugal: symbiotic efficiency and genetic diversity. J Appl Microbiol 90, 662–667.[CrossRef] [Google Scholar]
  24. Laranjo, M., Branco, C., Soares, R., Alho, L., Carvalho, M. & Oliveira, S.(2002). Comparison of chickpea rhizobia isolates from diverse Portuguese natural populations based on symbiotic effectiveness and DNA fingerprint. J Appl Microbiol 92, 1043–1050.[CrossRef] [Google Scholar]
  25. Laranjo, M., Machado, J., Young, J. P. W. & Oliveira, S.(2004). High diversity of chickpea Mesorhizobium species isolated in a Portuguese agricultural region. FEMS Microbiol Ecol 48, 101–107.[CrossRef] [Google Scholar]
  26. Liu, H., Li, Y., Huang, X., Kawamura, Y. & Ezaki, T.(2003). Use of the dnaJ gene for the detection and identification of all Legionella pneumophila serogroups and description of the primers used to detect 16S rDNA gene sequences of major members of the genus Legionella. Microbiol Immunol 47, 859–869.[CrossRef] [Google Scholar]
  27. Morita, Y., Maruyama, S., Kabeya, H., Nagai, A., Kozawa, K., Kato, M., Nakajima, T., Mikami, T., Katsube, Y. & Kimura, H.(2004). Genetic diversity of the dnaJ gene in the Mycobacterium avium complex. J Med Microbiol 53, 813–817.[CrossRef] [Google Scholar]
  28. Nei, M. & Kumar, S.(2000).Molecular Evolution and Phylogenetics. New York: Oxford University Press.
  29. Nhung, P. H., Shah, M. M., Ohkusu, K., Noda, M., Hata, H., Sun, X. S., Iihara, H., Goto, K., Masaki, T. & other authors(2007). The dnaJ gene as a novel phylogenetic marker for identification of Vibrio species. Syst Appl Microbiol 30, 309–315.[CrossRef] [Google Scholar]
  30. Olsen, G. J. & Woese, C. R.(1993). Ribosomal RNA: a key to phylogeny. FASEB J 7, 113–123. [Google Scholar]
  31. Peden, J. F.(2000).Analysis of Codon Usage. Nottingham: University of Nottingham.
  32. Rivas, R., Velázquez, E., Valverde, A., Mateos, P. F. & Martínez-Molina, E.(2001). A two primers random amplified polymorphic DNA procedure to obtain polymerase chain reaction fingerprints of bacterial species. Electrophoresis 22, 1086–1089.[CrossRef] [Google Scholar]
  33. Rivas, R., Laranjo, M., Mateos, P. F., Oliveira, S., Martinez-Molina, E. & Velázquez, E.(2007). Strains of Mesorhizobium amorphae and Mesorhizobium tianshanense, carrying symbiotic genes of common chickpea endosymbiotic species, constitute a novel biovar (ciceri) capable of nodulating Cicer arietinum. Lett Appl Microbiol 44, 412–418.[CrossRef] [Google Scholar]
  34. Saito, H. & Uchida, H.(1978). Organization and expression of DnaJ and DnaK genes of Escherichia coli K12. Mol Gen Genet 164, 1–8.[CrossRef] [Google Scholar]
  35. Saitou, N. & Nei, M.(1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425. [Google Scholar]
  36. Seshadri, R., Joseph, S. W., Chopra, A. K., Sha, J., Shaw, J., Graf, J., Haft, D., Wu, M., Ren, Q. & other authors(2006). Genome sequence of Aeromonas hydrophila ATCC 7966T: jack of all trades. J Bacteriol 188, 8272–8282.[CrossRef] [Google Scholar]
  37. Shah, M. M., Iihara, H., Noda, M., Song, S. X., Nhung, P. H., Ohkusu, K., Kawamura, Y. & Ezaki, T.(2007).dnaJ gene sequence-based assay for species identification and phylogenetic grouping in the genus Staphylococcus. Int J Syst Evol Microbiol 57, 25–30.[CrossRef] [Google Scholar]
  38. Sharp, P. M., Bailes, E., Grocock, R. J., Peden, J. F. & Sockett, R. E.(2005). Variation in the strength of selected codon usage bias among bacteria. Nucleic Acids Res 33, 1141–1153.[CrossRef] [Google Scholar]
  39. Siegenthaler, R. K., Grimshaw, J. P. A. & Christen, P.(2004). Immediate response of the DnaK molecular chaperone system to heat shock. FEBS Lett 562, 105–110.[CrossRef] [Google Scholar]
  40. Somasegaran, P. & Hoben, H. J.(1994).Handbook for Rhizobia. New York: Springer.
  41. Stackebrandt, E., Murray, R. G. E. & Trüper, H. G.(1988).Proteobacteria classis nov., a name for the phylogenetic taxon that includes the “purple bacteria and their relatives”. Int J Syst Bacteriol 38, 321–325.[CrossRef] [Google Scholar]
  42. Stepkowski, T., Czaplinska, M., Miedzinska, K. & Moulin, L.(2003). The variable part of the dnaK gene as an alternative marker for phylogenetic studies of rhizobia and related alpha Proteobacteria. Syst Appl Microbiol 26, 483–494.[CrossRef] [Google Scholar]
  43. Swofford, D. L.(2003).paup*: Phylogenetic analysis using parsimony (* and other methods). Sunderland, MA: Sinauer Associates.
  44. Tamura, K., Dudley, J., Nei, M. & Kumar, S.(2007).mega4: molecular evolutionary genetics analysis (mega) software version 4.0. Mol Biol Evol 24, 1596–1599.[CrossRef] [Google Scholar]
  45. Thompson, J. D., Higgins, D. G. & Gibson, T. J.(1994).clustalw: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673–4680.[CrossRef] [Google Scholar]
  46. Thompson, C. C., Thompson, F. L., Vandemeulebroecke, K., Hoste, B., Dawyndt, P. & Swings, J.(2004). Use of recA as an alternative phylogenetic marker in the family Vibrionaceae. Int J Syst Evol Microbiol 54, 919–924.[CrossRef] [Google Scholar]
  47. Turner, S. L. & Young, J. P.(2000). The glutamine synthetases of rhizobia: phylogenetics and evolutionary implications. Mol Biol Evol 17, 309–319.[CrossRef] [Google Scholar]
  48. Ventura, M., Canchaya, C., Bernini, V., Del Casale, A., Dellaglio, F., Neviani, E., Fitzgerald, G. F. & van Sinderen, D.(2005). Genetic characterization of the Bifidobacterium breve UCC 2003 hrcA locus. Appl Environ Microbiol 71, 8998–9007.[CrossRef] [Google Scholar]
  49. Vinuesa, P., Silva, C., Lorite, M. J., Izaguirre-Mayoral, M. L., Bedmar, E. J. & Martínez-Romero, E.(2005). Molecular systematics of rhizobia based on maximum likelihood and Bayesian phylogenies inferred from rrs, atpD, recA and nifH sequences, and their use in the classification of Sesbania microsymbionts from Venezuelan wetlands. Syst Appl Microbiol 28, 702–716.[CrossRef] [Google Scholar]
  50. Vitorino, L., Chelo, I. M., Bacellar, F. & Zé-Zé, L.(2007).Rickettsiae phylogeny: a multigenic approach. Microbiology 153, 160–168.[CrossRef] [Google Scholar]
  51. Xiao, X., Wang, P., Zeng, X., Bartlett, D. H. & Wang, F. P.(2007).Shewanella psychrophila sp nov and Shewanella piezotolerans sp nov., isolated from west Pacific deep-sea sediment. Int J Syst Evol Microbiol 57, 60–65.[CrossRef] [Google Scholar]
  52. Yamamoto, S. & Harayama, S.(1995). PCR amplification and direct sequencing of gyrB genes with universal primers and their application to the detection and taxonomic analysis of Pseudomonas putida strains. Appl Environ Microbiol 61, 1104–1109. [Google Scholar]
  53. Yamamoto, S., Kasai, H., Arnold, D. L., Jackson, R. W., Vivian, A. & Harayama, S.(2000). Phylogeny of the genus Pseudomonas: intrageneric structure reconstructed from the nucleotide sequences of gyrB and rpoD genes. Microbiology 146, 2385–2394. [Google Scholar]
  54. Young, J. P., Crossman, L., Johnston, A., Thomson, N. R., Ghazoui, Z. F., Hull, K. H., Wexler, M., Curson, A. R., Todd, J. D. & other authors(2006). The genome of Rhizobium leguminosarum has recognizable core and accessory components. Genome Biol 7, R34[CrossRef] [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.2008/001636-0
Loading
/content/journal/ijsem/10.1099/ijs.0.2008/001636-0
Loading

Data & Media loading...

Supplements

vol. , part 12, pp. 2839 - 2849

PCR primers and amplication conditions.

Graphical representation of G+C content (mol%) for alphaproteobacteria.

Phylogeny based on nucleotide sequences of for the genus and chickpea rhizobial isolates.

[PDF file of Supplementary Table and Figures](83 KB)



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error