1887

Abstract

Screening of sourdough lactic acid bacteria for bacteriocin production resulted in the isolation of a Gram-positive, catalase-negative, non-spore-forming, non-motile rod bacterium (strain CS1) that could not be associated with any previously described species. Comparative 16S rRNA gene sequence analysis recognized strain CS1 as a distinct member of the genus . By a species-specific PCR strategy, five additional strains previously isolated from sourdoughs were found to belong to the same species as strain CS1, as confirmed by 16S rRNA gene sequence analysis. The closest related species were , and , with which strain CS1 shared 93 % sequence similarity. For a further characterization of strain CS1, physiological (growth temperature, CO production, hydrolysis of arginine, isomeric type of lactate, sugar fermentation) and chemotaxonomic (G+C content and peptidoglycan structure) properties were determined. Phenotypic characterization showed that strain CS1 was a member of the obligately heterofermentative group of the genus . The DNA G+C content was 44·6 mol%. The peptidoglycan was of the A3 (-lys–-ser–-Ala) type. Physiological, biochemical and genotypic data, as well as results of DNA–DNA hybridization of genomic DNA with one of the closest phylogenetic relatives, (34·3 %), indicated that strain CS1 represents a novel species of the genus for which the name sp. nov. is proposed. The type strain of this species is CS1 (=ATCC BAA-822=DSM 15814).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.63075-0
2005-01-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/55/1/ijs550035.html?itemId=/content/journal/ijsem/10.1099/ijs.0.63075-0&mimeType=html&fmt=ahah

References

  1. Cai Y., Okada H., Mori H., Benno Y., Nakase T. 1999; Lactobacillus paralimentarius sp. nov., isolated from sourdough. Int J Syst Bacteriol 49:1451–1455 [CrossRef]
    [Google Scholar]
  2. Cashion P., Holder-Franklin M. A., McCully J., Franklin M. 1977; A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 81:461–466 [CrossRef]
    [Google Scholar]
  3. Collins M. D., Samelis J., Metaxopoulos J., Wallbanks S. 1993; Taxonomic studies on some Leuconostoc -like organisms from fermented sausages: description of a new genus Weissella for the Leuconostoc paramesenteroides group of species. J Appl Bacteriol 75:595–603 [CrossRef]
    [Google Scholar]
  4. Corsetti A., Lavermicocca P., Morea M., Baruzzi F., Tosti N., Gobbetti M. 2001; Phenotypic and molecular identification and clustering of lactic acid bacteria and yeasts from wheat (species Triticum durum and Triticum aestivum ) sourdoughs of Southern Italy. Int J Food Microbiol 64:95–104 [CrossRef]
    [Google Scholar]
  5. Corsetti A., De Angelis M., Dellaglio F., Paparella A., Fox P. F., Settanni L., Gobbetti M. 2003; Characterization of sourdough lactic acid bacteria based on genotypic and cell-wall protein analyses. J Appl Microbiol 94:641–654 [CrossRef]
    [Google Scholar]
  6. Corsetti A., Settanni L., van Sinderen D. 2004; Characterization of bacteriocin-like inhibitory substances (BLIS) from sourdough lactic acid bacteria and evaluation of their in vitro and in situ activity. J Appl Microbiol 96:521–534 [CrossRef]
    [Google Scholar]
  7. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142 [CrossRef]
    [Google Scholar]
  8. De Los Reyes-Gavilán C. G., Limsowtin G. K. Y., Tailliez P., Séchaud L., Accolas J. P. 1992; A Lactobacillus helveticus -specific DNA probe detects restriction fragment length polymorphisms in this species. Appl Environ Microbiol 58:3429–3432
    [Google Scholar]
  9. Ehrmann M. A., Muller M. R., Vogel R. F. 2003; Molecular analysis of sourdough reveals Lactobacillus mindensis sp. nov. Int J Syst Evol Microbiol 53:7–13 [CrossRef]
    [Google Scholar]
  10. Escara J. F., Hutton J. R. 1980; Thermal stability and renaturation of DNA in dimethyl sulfoxide solutions: acceleration of renaturation rate. Biopolymers 19:1315–1327 [CrossRef]
    [Google Scholar]
  11. Farrow J. A. E., Phillips B. A., Collins M. D. 1986; Nucleic acid studies on some heterofermentative lactobacilli: description of Lactobacillus malefermentans sp.nov. and Lactobacillus parabuchneri sp. nov.. FEMS Microbiol Lett 55:163–168
    [Google Scholar]
  12. Felsenstein J. 1993 phylip (Phylogeny Inference Package) version 3.5c. Distributed by the author Department of Genetics, University of Washington; Seattle, WA, USA:
    [Google Scholar]
  13. Gobbetti M., Corsetti A., Rossi J., La Rosa F., De Vincenzi S. 1994; Identification and clustering of lactic acid bacteria and yeasts from wheat sourdoughs of central Italy. Ital J Food Sci 1:85–94
    [Google Scholar]
  14. Gregersen T. 1978; Rapid method for distinction of Gram-negative from Gram-positive bacteria. Eur J Appl Microbiol Biotechnol 5:123–127 [CrossRef]
    [Google Scholar]
  15. Groth I., Schumann P., Weiss N., Martin K., Rainey F. A. 1996; Agrococcus jenensis gen. nov., sp. nov. a new genus of actinomycetes with diaminobutyric acid in the cell wall. Int J Syst Bacteriol 46:234–239 [CrossRef]
    [Google Scholar]
  16. Hammes W. P., Vogel R. F. 1995; The genus Lactobacillus . In The Lactic Acid Bacteria , vol. 2, The Genera of Lactic Acid Bacteria . pp  19–54 Edited by Wood B. J. B., Holzapfel W. H. London: Blackie Academic & Professional;
  17. Huss V. A. R., Festl H., Schleifer K. H. 1983; Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4:184–192 [CrossRef]
    [Google Scholar]
  18. Jahnke K. D. 1992; Basic computer program for evaluation of spectroscopic DNA renaturation data from GILFORD System 2600 spectrometer on a PC/XT/AT type personal computer. J Microbiol Methods 15:61–73 [CrossRef]
    [Google Scholar]
  19. Johansson M. L., Quednau M., Molin G., Ahrné S. 1995; Randomly amplified polymorphic DNA (RAPD) for rapid typing of Lactobacillus plantarum strains. Lett Appl Microbiol 21:155–159 [CrossRef]
    [Google Scholar]
  20. Kandler O., Weiss N. 1986; Genus Lactobacillus Beijerinck 1901. In Bergey's Manual of Systematic Bacteriology vol 2 pp  1209–1234 Edited by Sneath P. H. A., Mair N. S., Sharpe M. E., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  21. Kandler O., Schillinger U., Weiss N. 1983; Lactobacillus halotolerans sp. nov., nom. rev. and Lactobacillus minor sp. nov., nom. rev. Syst Appl Microbiol 4:280–285 [CrossRef]
    [Google Scholar]
  22. Kleynmans U., Heinzl H., Hammes W. P. 1989; Lactobacillus suebicus sp. nov., an obligately heterofermentative Lactobacillus species isolated from fruit mashes. Syst Appl Microbiol 11:267–271 [CrossRef]
    [Google Scholar]
  23. Kline L., Sugihara T. F. 1971; Microorganisms of the San Francisco sour dough bread process. II. Isolation and characterization of undescribed bacterial species responsible for the souring activity. Appl Microbiol 21:459–465
    [Google Scholar]
  24. Kumar S., Tamura K., Jakobsen I. B., Nei M. 2001; mega2: molecular evolutionary genetics analysis software. Bioinformatics 17:1244–1245 [CrossRef]
    [Google Scholar]
  25. Leisner J. J., Vancanneyt M., Lefebvre K., Vandemeulebroecke K., Hoste B., Vilalta N. E., Rusul G., Swings J. 2002; Lactobacillus durianis sp. nov., isolated from an acid-fermented condiment (tempoyak) in Malaysia. Int J Syst Evol Microbiol 52:927–931 [CrossRef]
    [Google Scholar]
  26. MacKenzie S. L. 1987; Gas chromatographic analysis of amino acids as the N -heptafluorobutyryl isobutyl esters. J Assoc Anal Chem 70:151–160
    [Google Scholar]
  27. Meroth C. B., Hammes W. P., Hertel C. 2004; Characterisation of the microbiota of rice sourdoughs and description of Lactobacillus spicheri sp. nov. Syst Appl Microbiol 27:151–159 [CrossRef]
    [Google Scholar]
  28. Mesbah M., Premachandran U., Whitmann W. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [CrossRef]
    [Google Scholar]
  29. Müller M. R. A., Ehrmann M. A., Vogel R. F. 2000; Lactobacillus frumenti sp. nov., a new lactic acid bacterium isolated from rye-bran fermentations with a long fermentation period. Int J Syst Evol Microbiol 50:2127–2133 [CrossRef]
    [Google Scholar]
  30. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  31. Schleifer K. H. 1985; Analysis of the chemical composition and primary structure of murein. Methods Microbiol 18:123–156
    [Google Scholar]
  32. Schleifer K. H., Kandler O. 1972; Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36:407–477
    [Google Scholar]
  33. Sharpe M. E. 1979; Identification of lactic acid bacteria. In Identification Methods for Microbiologist s (Technical Series 14) pp  233–259 Edited by Skinner F. A., Lovelock D. W. London: Academic Press;
    [Google Scholar]
  34. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:435–439 [CrossRef]
    [Google Scholar]
  35. Stendid J., Karlsson J. O., Hogberg N. 1994; Intra-specific genetic variation in Heterobasidium annosum revealed by amplification of minisatellite DNA. Mycol Res 98:57–63 [CrossRef]
    [Google Scholar]
  36. Stolz P. 1995 Untersuchungen des Maltosemetabolismus von Lactobazillen aus Sauerteig Stuttgart: Ulrich Grauer;
    [Google Scholar]
  37. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reversed-phase high performance liquid chromatography. FEMS Microbiol Lett 25:125–128 [CrossRef]
    [Google Scholar]
  38. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  39. van de Peer Y., de Wachter R. 1994; treecon for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. Comput Appl Biosci 10:569–570
    [Google Scholar]
  40. Vincent D., Roy D., Mondou F., Déry C. 1998; Characterization of bifidobacteria by random DNA amplification. Int J Food Microbiol 43:185–193 [CrossRef]
    [Google Scholar]
  41. Vogel R. F., Knorr R., Müller R. A., Steudel U., Gänzle M. G., Ehrmann M. A. 1999; Non-dairy lactic fermentations: the cereal world. Antonie van Leeuwenhoek 76:403–411 [CrossRef]
    [Google Scholar]
  42. Zapparoli G., Torriani S., Dellaglio F. 1998; Differentiation of Lactobacillus sanfranciscensis strains by randomly amplified polymorphic DNA and pulsed-field gel electrophoresis. FEMS Microbiol Lett 166:324–332
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.63075-0
Loading
/content/journal/ijsem/10.1099/ijs.0.63075-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error