1887

Abstract

Strain LB400 is the best-studied polychlorinated biphenyl (PCB) degrader. This organism has previously been allocated in the genus , since its 16S rRNA gene sequence shows 98·6 % sequence similarity to the type strains of and . A polyphasic study was undertaken to clarify the actual taxonomic position of this biotechnologically important organism and of two strains, one recovered from a blood culture vial and one from a coffee plant rhizosphere, both of which resembled strain LB400 in their whole-cell protein patterns. DNA–DNA hybridization experiments revealed that the three strains represented a single novel species, for which the name sp. nov. is proposed. Strains of this novel species can be differentiated phenotypically from nearly all other species by their inability to assimilate -arabinose. The whole-cell fatty acid profile of strains is consistent with their classification in the genus , with 18 : 17, 16 : 17, 16 : 0, 14 : 0 3OH, 16 : 0 3OH, 17 : 0 cyclo and 14 : 0 being the most abundant fatty acids. The G+C content of the species varies between 62·4 and 62·9 mol%. The type strain of is LB400 (=LMG 21463=CCUG 46959=NRRL B-18064).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.63101-0
2004-09-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/54/5/ijs541677.html?itemId=/content/journal/ijsem/10.1099/ijs.0.63101-0&mimeType=html&fmt=ahah

References

  1. Achouak W., Christen R., Barakat M., Martel M.-H., Heulin T. 1999; Burkholderia caribensis sp. nov., an exopolysaccharide-producing bacterium isolated from vertisol microaggregates in Martinique. Int J Syst Bacteriol 49:787–794 [CrossRef]
    [Google Scholar]
  2. Bartels F., Backhaus S., Moore E. R. B., Timmis K. N., Hofer B. 1999; Occurrence and expression of glutathiane- S -transferase-encoding bphK genes in Burkholderia sp. strain LB400 and other biphenyl-utilizing bacteria. Microbiology 145:2821–2834
    [Google Scholar]
  3. Bedard D. L., Unterman R., Bopp L. H., Brennan M. J., Haberl M. L., Johnson C. 1986; Rapid assay for screening and characterizing microorganisms for the ability to degrade polychlorinated biphenyls. Appl Environ Microbiol 51:761–768
    [Google Scholar]
  4. Bopp L. H. 1986; Degradation of highly chlorinated PCBs by Pseudomonas strain LB400. J Ind Microbiol 1:23–29 [CrossRef]
    [Google Scholar]
  5. Bopp L. H. 1989; US patent # 4,843,009. Pseudomonas putida capable of degrading PCBs . June 27: 1989; Inventor: Lawrence H. Bopp; Scotia, NY Assignee: General Electric Company; Schenectady, NY:
    [Google Scholar]
  6. Brosius J., Dull T. J., Sleeter D. D., Noller H. F. 1981; Gene organization and primary structure of a ribosomal RNA operon from Escherichia coli . J Mol Biol 148:107–127 [CrossRef]
    [Google Scholar]
  7. Coenye T., Vandamme P. 2003; Diversity and significance of Burkholderia species occupying diverse ecological niches. Environ Microbiol 5:719–729 [CrossRef]
    [Google Scholar]
  8. Coenye T., Laevens S., Willems A., Ohlén M., Hannant W., Govan J. R. W., Gillis M., Falsen E., Vandamme P. 2001; Burkholderia fungorum sp. nov., and Burkholderia caledonica sp. nov., two new species isolated from the environment, animals and human clinical samples. Int J Syst Evol Microbiol 51:1099–1107 [CrossRef]
    [Google Scholar]
  9. Erickson B. D., Mondello F. J. 1992; Nucleotide sequencing and transcriptional mapping of the genes encoding biphenyl dioxygenase, a multicomponent polychlorinated biphenyl-degrading enzyme in Pseudomonas strain LB400. J Bacteriol 174:2903–2912
    [Google Scholar]
  10. Estrada-de los Santos P., Bustillos-Cristales R., Caballero-Mellado J. 2001; Burkholderia , a genus rich in plant-associated nitrogen fixers with wide environmental and geographic distribution. Appl Environ Microbiol 67:2790–2798 [CrossRef]
    [Google Scholar]
  11. Fain M. G., Haddock J. D. 2001; Phenotypic and phylogenetic characterization of Burkholderia ( Pseudomonas ) sp. strain LB400.. Curr Microbiol 42:269–275
    [Google Scholar]
  12. Furukawa K. 2000; Biochemical and genetic bases of microbial degradation of polychlorinated biphenyls (PCBs). J Gen Appl Microbiol 46:283–296 [CrossRef]
    [Google Scholar]
  13. Gibson D. T., Cruden D. L., Haddock J. D., Zylstra G. J., Brand J. M. 1993; Oxidation of polychlorinated biphenyls by Pseudomonas sp. strain LB400 and Pseudomonas pseudoalcaligenes KF707. J Bacteriol 175:4561–4564
    [Google Scholar]
  14. Goris J., De Vos P., Coenye T. 7 other authors 2001; Classification of metal-resistant bacteria from industrial biotopes as Ralstonia campinensis sp. nov., Ralstonia metallidurans sp. nov., and Ralstonia basilensis Steinle et al . 1998 emend. Int J Syst Evol Microbiol 51:1773–1782 [CrossRef]
    [Google Scholar]
  15. Goris J., Dejonghe W., Falsen E., De Clerck E., Geeraerts B., Willems A., Top E. M., Vandamme P., De Vos P. 2002; Diversity of transconjugants that acquired plasmid pJP4 or pEMT1 after inoculation of a donor strain in the A- and B-horizon of an agricultural soil and description of Burkholderia hospita sp.nov. and Burkholderia terricola sp. nov. Syst Appl Microbiol 25:340–352 [CrossRef]
    [Google Scholar]
  16. Hofer B., Eltis L. D., Dowling D. N., Timmis K. N. 1993; Genetic analysis of a Pseudomonas locus encoding a pathway for biphenyl/polychlorinated biphenyl degradation. Gene 130:47–55 [CrossRef]
    [Google Scholar]
  17. Kumamaru T., Suenaga H., Mitsuoka M., Watanabe T., Furukawa K. 1998; Enhanced degradation of polychlorinated biphenyls by directed evolution of biphenyl dioxygenase. Nat Biotechnol 16:663–666 [CrossRef]
    [Google Scholar]
  18. Maltseva O. V., Tsoi T. V., Quensen J. F. III, Fukuda M., Tiedje J. M. 1999; Degradation of anaerobic reductive dechlorination products of Aroclor 1242 by four aerobic bacteria. Biodegradation 10:363–371 [CrossRef]
    [Google Scholar]
  19. Mascarua-Esparza M. A., Villa-Gonzalez R., Caballero-Mellado J. 1988; Acetylene reduction and indoleacetic acid production by Azospirillum isolates from cactaceous plants. Plant Soil 106:91–95 [CrossRef]
    [Google Scholar]
  20. Mueller J. G., Devereux R., Santavy D. L., Lantz S. E., Willis S. G., Pritchard P. H. 1997; Phylogenetic and physiological comparisons of PAH-degrading bacteria from geographically diverse soils. Antonie Van Leeuwenhoek 71:329–343 [CrossRef]
    [Google Scholar]
  21. Pot B., Vandamme P., Kersters K. 1994; Analysis of electrophoretic whole-organism protein fingerprints. In Chemical Methods in Prokaryotic Systematics pp  493–521 Edited by Goodfellow M., O'Donnell A. G. Chichester: Wiley;
    [Google Scholar]
  22. Rademaker J. L. W., De Bruijn F. J. 1997; Characterization and classification of microbes by rep-PCR genomic fingerprinting and computer assisted pattern analysis. In DNA Markers: Protocols, Applications and Overviews pp  151–171 Edited by Caetano-Anollés G., Gresshoff P. M. New York: Wiley;
    [Google Scholar]
  23. Seeger M., Zielinski M., Timmis K. N., Hofer B. 1999; Regiospecificity of dioxygenation of di- to pentachlorobiphenyls and their degradation to chlorobenzoates by the bph -encoded catabolic pathway of Burkholderia sp. strain LB400. Appl Environ Microbiol 65:3614–3621
    [Google Scholar]
  24. Stackebrandt E., Frederiksen W., Garrity G. M. 10 other authors 2002; Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int J Syst Evol Microbiol 52:1043–1047 [CrossRef]
    [Google Scholar]
  25. Stead D. E. 1992; Grouping of plant-pathogenic and some other Pseudomonas spp. by using cellular fatty acid profiles. Int J Syst Bacteriol 42:281–295 [CrossRef]
    [Google Scholar]
  26. Vandamme P., Gillis M., Vancanneyt M., Hoste B., Kersters K., Falsen E. 1993; Moraxella lincolnii sp. nov., isolated from the human respiratory tract, and reevaluation of the taxonomic position of Moraxella osloensis . Int J Syst Bacteriol 43:474–481 [CrossRef]
    [Google Scholar]
  27. Vandamme P., Goris J., Chen W.-M., De Vos P., Willems A. 2002; Burkholderia tuberum sp. nov. and Burkholderia phymatum sp. nov., nodulate the roots of tropical legumes. Syst Appl Microbiol 25:507–512 [CrossRef]
    [Google Scholar]
  28. Vauterin L., Yang P., Hoste B., Vancanneyt M., Civerolo E. L., Swings J., Kersters K. 1991; Differentiation of Xanthomonas campestris pv. citri strains by sodium dodecyl sulfate-polyacrylamide gel electrophoresis of proteins, fatty acid analysis, and DNA-DNA hybridization. Int J Syst Bacteriol 41:535–542 [CrossRef]
    [Google Scholar]
  29. Viallard V., Poirier I., Cournoyer B., Haurat J., Wiebkin S., Ophel-Keller K., Balandreau J. 1998; Burkholderia graminis sp. nov., a rhizospheric Burkholderia species, and reassessment of[ Pseudomonas ] phenazinium , [ Pseudomonas ] pyrrocinia and [ Pseudomonas ] glathei as Burkholderia . Int J Syst Bacteriol 48:549–563 [CrossRef]
    [Google Scholar]
  30. Wayne L. G., Brenner D. J., Colwell R. R. 9 other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
  31. Willems A., Doignon-Bourcier F., Goris J., Coopman R., de Lajudie P., De Vos P., Gillis M. 2001; DNA–DNA hybridization study of Bradyrhizobium strains. Int J Syst Evol Microbiol 51:1315–1322
    [Google Scholar]
  32. Zaitsev G. M., Karasevich Y. N. 1985; Primary steps in metabolism of 4-chlorobenzoate in Arthrobacter globiformis . Mikrobiologiya 50:423–428 (in Russian)
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.63101-0
Loading
/content/journal/ijsem/10.1099/ijs.0.63101-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error