1887

Abstract

Earthworms emit nitrous oxide (NO) via the activity of bacteria in their gut. Four NO-producing facultative aerobes, ED1, ED5, MH21 and MH72, were isolated from the gut of the earthworm . The isolates produced NO under conditions that simulated the microenvironment of the earthworm gut. ED1 and ED5 were Gram-negative, motile rods that carried out complete denitrification (i.e. the reduction of nitrate to N) and contained membranous -type cytochromes. ED1 grew optimally at 30 °C and pH 7. ED1 oxidized organic acids and reduced (per)chlorate, sulfate, nitrate and nitrite. The closest phylogenetic relative of ED1 was . ED5 grew optimally at 25 °C and pH 7. ED5 grew mainly on sugars, and nitrate and nitrite were used as alternative electron acceptors. The closest phylogenetic relatives of ED5 were and . MH21 and MH72 were motile, spore-forming, rod-shaped bacteria with a three-layered cell wall. Sugars supported the growth of MH21 and MH72. Cells of MH21 grew in chains, were linked by connecting filaments and contained membranous -type cytochromes. MH21 grew optimally at 30–35 °C and pH 7·7, grew by fermentation and reduced low amounts of nitrite to NO. The closest phylogenetic relatives of MH21 were and . Based on morphological, physiological and phylogenetic characteristics, ED1 (=DSM 15892=ATCC BAA-841), ED5 (=DSM 15936=ATCC BAA-842) and MH21 (=DSM 15890=ATCC BAA-844) are proposed as type strains of the novel species sp. nov., sp. nov. and sp. nov., respectively. MH72 is considered a new strain of .

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.63484-0
2005-05-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/55/3/ijs551255.html?itemId=/content/journal/ijsem/10.1099/ijs.0.63484-0&mimeType=html&fmt=ahah

References

  1. Achenbach L. A., Michaelidou U., Bruce R. A., Fryman J., Coates J. D. 2001; Dechloromonas agitata gen. nov., sp. nov. and Dechlorosoma suillum gen. nov., sp. nov., two novel environmentally dominant (per)chlorate-reducing bacteria and their phylogenetic position. Int J Syst Evol Microbiol 51:527–533
    [Google Scholar]
  2. Altschul S. F., Madden T. L., Schaffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 [CrossRef]
    [Google Scholar]
  3. Anderson I. C., Levine J. S. 1986; Relative rates of nitric oxide and nitrous oxide production by nitrifiers, denitrifiers, and nitrate respirers. Appl Environ Microbiol 51:938–945
    [Google Scholar]
  4. Bayer M. E., Easterbrook K. 1991; Tubular spinae are long-distance connectors between bacteria. J Gen Microbiol 137:1081–1086 [CrossRef]
    [Google Scholar]
  5. Bergey D. H., Krieg N. R., Holt J. G. 1990 Bergey's Manual of Systematic Bacteriology Baltimore: Williams & Wilkins;
    [Google Scholar]
  6. Bernardet J.-F., Segers P., Vancanneyt M., Berthe F., Kersters K., Vandamme P. 1996; Cutting a Gordian knot: emended classification and description of the genus Flavobacterium , emended description of the family Flavobacteriaceae , and proposal of Flavobacterium hydatis nom. nov. (basonym, Cytophaga aquatilis Strohl and Tait 1978). Int J Syst Bacteriol 46:128–148 [CrossRef]
    [Google Scholar]
  7. Borken W., Grundel S., Beese F. 2000; Potential contribution of Lumbricus terrestris L. to carbon dioxide, methane and nitrous oxide fluxes from a forest soil. Biol Fertil Soils 32:142–148 [CrossRef]
    [Google Scholar]
  8. Bulthuis B. A., Rommens C., Koningstein G. M., Stouthamer A. H., van Verseveld H. W. 1991; Formation of fermentation products and extracellular protease during anaerobic growth of Bacillus licheniformis in chemostat and batch-culture. Antonie van Leeuwenhoek 60:355–371 [CrossRef]
    [Google Scholar]
  9. Cashion P., Holder-Franklin M. A., McCully J., Franklin M. 1977; Rapid method for base ratio determination of bacterial DNA. Anal Biochem 81:461–466 [CrossRef]
    [Google Scholar]
  10. Cataldo D. A., Haroon M., Schrader L. E., Young V. L. 1975; Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid. Commun in Soil Sci Plant Anal 6:71–80 [CrossRef]
    [Google Scholar]
  11. Coates J. D., Michaelidou U., Bruce R. A., O'Connor S. M., Crespi J. N., Achenbach L. A. 1999; Ubiquity and diversity of dissimilatory (per)chlorate-reducing bacteria. Appl Environ Microbiol 65:5234–5241
    [Google Scholar]
  12. Cowan S. T. 1974 Cowan & Steel's Manual for the Identification of Medical Bacteria , 2nd edn. New York: Cambridge University Press;
    [Google Scholar]
  13. Cummings D. E., Caccavo F., Spring S., Rosenzweig R. F. 1999; Ferribacterium limneticum , gen. nov., sp. nov., an Fe(III)-reducing microorganism isolated from mining-impacted freshwater lake sediments. Arch Microbiol 171:183–188 [CrossRef]
    [Google Scholar]
  14. Drake H. L., Schramm A., Horn M. 2005; Earthworm gut microbial biomes: their importance to soil microorganisms, denitrification, and the terrestrial production of the greenhouse gas N2O. In Intestinal Microorganisms of Termites and Other Invertebrates Edited by König H., Varma A. New York: Springer; (in press
    [Google Scholar]
  15. Elo S., Suominen I., Kämpfer P., Juhanoja J., Salkinoja-Salonen M., Haahtela K. 2001; Paenibacillus borealis sp. nov., a nitrogen-fixing species isolated from spruce forest humus in finland. Int J Syst Evol Microbiol 51:535–545
    [Google Scholar]
  16. Fröstl J. M., Seifritz C., Drake H. L. 1996; Effect of nitrate on the autotrophic metabolism of the acetogens Clostridium thermoautotrophicum and Clostridium thermoaceticum . J Bacteriol 178:4597–4603
    [Google Scholar]
  17. Furlong M. A., Singleton D. R., Coleman D. C., Whitman W. B. 2002; Molecular and culture-based analyses of prokaryotic communities from an agricultural soil and the burrows and casts of the earthworm Lumbricus rubellus . Appl Environ Microbiol 68:1265–1279 [CrossRef]
    [Google Scholar]
  18. Gadkari D. 1984; Influence of herbicides Goltix and Sencor on nitrification. Zentralbl Mikrobiol 139:623–631
    [Google Scholar]
  19. Harrigan W. F., McCance M. E. 1966 Laboratory Methods in Microbiology London: Academic Press;
    [Google Scholar]
  20. Horn M. A., Schramm A., Drake H. L. 2003; The earthworm gut: an ideal habitat for ingested N2O-producing microorganisms. Appl Environ Microbiol 69:1662–1669 [CrossRef]
    [Google Scholar]
  21. Hungate R. E. 1969; A roll tube method for cultivation of strict anaerobes. Methods Microbiol 3B:117–132
    [Google Scholar]
  22. Ihssen J., Horn M. A., Matthies C., Gößner A., Schramm A., Drake H. L. 2003; N2O-producing microrganisms in the gut of the earthworm Aporrectodea caliginosa are indicative of ingested soil bacteria. Appl Environ Microbiol 69:1655–1661 [CrossRef]
    [Google Scholar]
  23. Karsten G. R., Drake H. L. 1995; Comparative assessment of the aerobic and anaerobic microfloras of earthworm guts and forest soils. Appl Environ Microbiol 61:1039–1044
    [Google Scholar]
  24. Karsten G. R., Drake H. L. 1997; Denitrifying bacteria in the earthworm gastrointestinal tract and in vivo emission of nitrous oxide (N2O) by earthworms. Appl Environ Microbiol 63:1878–1882
    [Google Scholar]
  25. Kuhner C. H., Matthies C., Acker G., Schmittroth M., Gößner A., Drake H. L. 2000; Clostridium akagii sp. nov. and Clostridium acidisoli sp. nov.: acid-tolerant, N2-fixing clostridia isolated from acidic forest soil and litter. Int J Syst Evol Microbiol 50:873–881 [CrossRef]
    [Google Scholar]
  26. Küsel K., Dorsch T., Acker G., Stackebrandt E., Drake H. L. 2000; Clostridium scatologenes strain SL1 isolated as an acetogenic bacterium from acidic sediments. Int J Syst Evol Microbiol 50:537–546 [CrossRef]
    [Google Scholar]
  27. Küsel K., Karnholz A., Trinkwalter T., Devereux R., Acker G., Drake H. L. 2001; Physiological ecology of Clostridium glycolicum RD-1, an aerotolerant acetogen isolated from sea grass roots. Appl Environ Microbiol 67:4734–4741 [CrossRef]
    [Google Scholar]
  28. Ludwig W., Strunk O., Klugbauer S., Klugbauer N., Weizenegger M., Neumaier J., Bachleitner M., Schleifer K.-H. 1998; Bacterial phylogeny based on comparative sequence analysis. Electrophoresis 19:554–568 [CrossRef]
    [Google Scholar]
  29. Matthies C., Griesshammer A., Schmittroth M., Drake H. L. 1999; Evidence for involvement of gut-associated denitrifying bacteria in emission of nitrous oxide (N2O) by earthworms obtained from garden and forest soils. Appl Environ Microbiol 65:3599–3604
    [Google Scholar]
  30. Matthies C., Kuhner C. H., Acker G., Drake H. L. 2001; Clostridium uliginosum sp. nov., a novel acid-tolerant, anaerobic bacterium with connecting filaments. Int J Syst Evol Microbiol 51:1119–1125 [CrossRef]
    [Google Scholar]
  31. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Microbiol 39:159–167
    [Google Scholar]
  32. Reichenbach H. 1989; Order I. Cytophagales Leadbetter 1974, 99AL . In Bergey's Manual of Systematic Bacteriology vol 3 pp  2011–2082 Edited by Staley J. T., Bryant M. P., Pfennig N., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  33. Schlegel H. G., Jannasch H. W. 1992; Prokaryotes and their habitats. In The Prokaryotes vol 1 pp  75–125 Edited by Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K. H. New York: Springer;
    [Google Scholar]
  34. Shida O., Takagi H., Kadowaki K., Nakamura L. K., Komagata K. 1997; Emended description of Paenibacillus amylolyticus and description of Paenibacillus illinoisensis sp. nov. and Paenibacillus chibensis sp. nov. Int J Syst Bacteriol 47:299–306 [CrossRef]
    [Google Scholar]
  35. Smibert R. M., Krieg N. R. 1994; Phenotypic characterization. In Methods for General and Molecular Bacteriology pp  607–657 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  36. Spurr A. R. 1969; A low-viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res 26:31–43 [CrossRef]
    [Google Scholar]
  37. Stouthamer A. H. 1988; Dissimilatory reduction of oxidized nitrogen compounds. In Biology of Anaerobic Microorganisms pp  245–301 Edited by Zehnder E. J. B. New York: Wiley;
    [Google Scholar]
  38. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reverse-phased high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128 [CrossRef]
    [Google Scholar]
  39. Traub W. H., Acker G., Kleber I. 1976; Ultrastructural surface alterations of Serratia marcescens after exposure to polymyxin B and/or fresh human serum. Chemotherapy 22:104–113 [CrossRef]
    [Google Scholar]
  40. Valentine R. C., Shapiro B. M., Stadtman E. R. 1968; Regulation of glutamine synthetase. XII. Electron microscopy of the enzyme from Escherichia coli . Biochemistry 7:2143–2152 [CrossRef]
    [Google Scholar]
  41. Van der Meulen H. J., Harder W., Veldkamp H. 1974; Isolation and characterization of Cytophaga flevensis sp. nov., a new agarolytic flexibacterium. Antonie van Leeuwenhoek 40:329–346 [CrossRef]
    [Google Scholar]
  42. Yoon J.-H., Oh H.-M., Yoon B.-D., Kang K. H., Park Y.-H. 2003; Paenibacillus kribbensis sp. nov. and Paenibacillus terrae sp. nov., bioflocculants for efficient harvesting of algal cells. Int J Syst Evol Microbiol 53:295–301 [CrossRef]
    [Google Scholar]
  43. Zumft W. G. 1992; The denitrifying prokaryotes. In The Prokaryotes , 2nd edn. pp  554–582 Edited by Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K. H. New York: Springer;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.63484-0
Loading
/content/journal/ijsem/10.1099/ijs.0.63484-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error