1887

Abstract

Three indigo-reducing obligately alkaliphilic strains, M3, 41A and 41C, were isolated. The isolates grew at pH 9–12, but not at pH 7–8. They were Gram-positive, facultatively anaerobic, straight rod-shaped strains with peritrichous flagella. The isolates grew in 0–14 % (w/v) NaCl, with optimum growth at 3–13 %. They grew at temperatures between 10 and 45 °C, with optimum growth at around 30–37 °C. They did not hydrolyse starch or gelatin. -lactate was the major end-product from -glucose. No quinones could be detected. The peptidoglycan type was A4, Orn–-Asp. The major cellular fatty acids were C, C7 and C9. The DNA G+C content was 42·6–43·2 mol%. Phylogenetic analysis based on 16S rRNA gene sequence data indicated that the isolates belong to the genus . DNA–DNA hybridization revealed low similarity (less than 16 %) of the isolates with respect to the two closest phylogenetically related strains, and . On the basis of phenotypic and chemotaxonomic characteristics, phylogenetic data and DNA–DNA relatedness, the isolates merit classification as a novel species of the genus , for which the name is proposed. The type strain is M3 (=JCM 12662=NCIMB 14024).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.63487-0
2005-07-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/55/4/ijs551525.html?itemId=/content/journal/ijsem/10.1099/ijs.0.63487-0&mimeType=html&fmt=ahah

References

  1. Aguirre M., Collins M. D. 1992; Phylogenetic analysis of Alloiococcus otitis gen. nov., sp. nov. an organism from human middle ear fluid. Int J Syst Bacteriol 42:79–83 [CrossRef]
    [Google Scholar]
  2. Aguirre M., Morrison D., Cookson B. D., Gay F. W., Collins M. D. 1993; Phenotypic and phylogenetic characterization of some Gemella -like organisms from human infections: description of Dolosigranulum pigrum gen. nov., sp. nov.. J Appl Bacteriol 75:608–612 [CrossRef]
    [Google Scholar]
  3. Duckworth A. W., Grant W. D., Jones B. E., van Steenbergen R. 1996; Phylogenetic diversity of soda lake alkaliphiles. FEMS Microbiol Ecol 19:181–191 [CrossRef]
    [Google Scholar]
  4. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229 [CrossRef]
    [Google Scholar]
  5. Franzmann P. D., Hopfl P., Weiss N., Tindall B. J. 1991; Psychrotrophic lactic acid-producing bacteria from anoxic waters in Ace Lake, Antarctica; Carnobacterium funditum sp.nov. and Carnobacteium alterfunditium sp. nov. Arch Microbiol 156:255–262 [CrossRef]
    [Google Scholar]
  6. Horikoshi K. 1991 Microorganisms in Alkaline Environments Tokyo/Weinheim: Kodansha/VCH;
    [Google Scholar]
  7. Hugh R., Leifson E. 1953; The taxonomic significance of fermentative versus oxidative metabolism of carbohydrates by various Gram-negative bacteria. J Bacteriol 66:24–26
    [Google Scholar]
  8. Ishikawa M., Nakajima K., Yanagi M., Yamamoto Y., Yamasato K. 2003; Marinilactibacillus psychrotolerans gen. nov. sp. nov. a halophilic and alkaliphilic marine lactic acid bacterium isolated from marine organisms in temperate and subtropical areas of Japan. Int J Syst Evol Microbiol 53711–720 [CrossRef]
    [Google Scholar]
  9. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [CrossRef]
    [Google Scholar]
  10. Krulwich T. A., Guffanti A. A. 1989; Alkalophilic bacteria. Annu Rev Microbiol 43:435–463 [CrossRef]
    [Google Scholar]
  11. Krulwich T. A., Ito M., Guffanti A. A. 2001; The Na+-dependence of alkaliphily in Bacillus . Biochim Biophys Acta 1505158–168 [CrossRef]
    [Google Scholar]
  12. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 3:208–218 [CrossRef]
    [Google Scholar]
  13. Nielsen P., Fritze D., Priest F. G. 1995; Phenetic diversity of alkaliphilic Bacillus strains: proposal for nine new species. Microbiology 141:1745–1761 [CrossRef]
    [Google Scholar]
  14. Ntougias S., Russell N. J. 2001; Alkalibacterium olivoapovliticus gen. nov. sp. nov. a new obligately alkaliphilic bacterium isolated from edible-olive wash waters. Int J Syst Evol Microbiol 511161–1170 [CrossRef]
    [Google Scholar]
  15. Okada S., Uchimura T., Kozaki M. 1992 Laboratory Manual for Lactic Acid Bacteria Tokyo: Asakura-shoten (in Japanese;
    [Google Scholar]
  16. Padden A. N., Dillon V. M., Edmonds J., Collins M. D., Alvarez N., John P. 1999; An indigo-reducing moderate thermophile from a woad vat, Clostridium isatidis sp. nov. Int J Syst Bacteriol 49:1025–1031 [CrossRef]
    [Google Scholar]
  17. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  18. Takahara Y., Tanabe O. 1960; Studies on the reduction of indigo in industrial fermentation vat (VII. J Ferment Technol 38:329–331
    [Google Scholar]
  19. Takami H., Inoue A., Fuji F., Horikoshi K. 1997; Microbial flora in the deepest sea mud of the Mariana Trench. FEMS Microbiol Lett 152:279–285 [CrossRef]
    [Google Scholar]
  20. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128 [CrossRef]
    [Google Scholar]
  21. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  22. Thongaram T., Kosono S., Ohkuma M., Hongoh Y., Kitada M., Yoshinaka T., Trakulnaleamsai S., Noparatnaraporn N., Kudo T. 2003; Gut of higher termites as a niche for alkaliphiles as shown by culture-based and culture-independent studies. Microbes Environ 18:152–159 [CrossRef]
    [Google Scholar]
  23. Yumoto I. 2002; Bioenergetics of alkaliphilic Bacillus spp. J Biosci Bioeng 93:342–353 [CrossRef]
    [Google Scholar]
  24. Yumoto I. 2003; Electron transport system in alkaliphilic Bacillus spp. Recent Res Dev Bacteriol 1:131–149
    [Google Scholar]
  25. Yumoto I., Yamazaki K., Sawabe T., Nakano K., Kawasaki K., Ezura Y., Shinano H. 1998; Bacillus horti sp. nov., a new Gram-negative alkaliphilic bacillus. Int J Syst Bacteriol 48:565–571 [CrossRef]
    [Google Scholar]
  26. Yumoto I., Yamazaki K., Hishinuma M., Nodasaka Y., Suemori A., Nakajima K., Inoue N., Kawasaki K. 2001; Pseudomonas alcaliphila sp. nov., a novel facultatively psychrophilic alkaliphile isolated from seawater. Int J Syst Evol Microbiol 51:349–355
    [Google Scholar]
  27. Yumoto I., Nakamura A., Iwata H., Kojima K., Kusumoto K., Nodasaka Y., Matsuyama H. 2002; Dietzia psychralcaliphila sp. nov., a novel, facultatively psychrophilic alkaliphile that grows on hydrocarbons. Int J Syst Evol Microbiol 52:85–90
    [Google Scholar]
  28. Yumoto I., Hirota K., Nodasak Y., Yokota Y., Hoshino T., Nakajima K. 2004; Alkalibacterium psychrotolerans sp. nov., a psychrotolerant obligate alkaliphile that reduces an indigo dye. Int J Syst Evol Microbiol 54:2379–2383 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.63487-0
Loading
/content/journal/ijsem/10.1099/ijs.0.63487-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error