1887

Abstract

Phytopathogenic mollicutes, which include spiroplasmas and phytoplasmas, are cell wall-less bacteria that parasitize plant hosts and insect vectors. Knowledge of the evolution of these agents is important in understanding their biology. The availability of the first complete phytoplasma and several partial spiroplasma and phytoplasma genome sequences made possible an investigation of evolutionary relationships between phytopathogenic mollicutes and other micro-organisms, especially Gram-positive bacteria, using a comparative genomics approach. Genome data from a total of 41 bacterial species were used in the analysis. Sixty-one conserved proteins were selected from each species for the construction of a hypothetical phylogenetic tree. The genes encoding these selected proteins are among a core of genetic elements that constitute a hypothetical minimal genome. The proteins were concatenated into five superproteins according to their functional categories, and phylogenetic trees were reconstructed using distance, parsimony and likelihood methods. Phylogenetic trees based on the five sets of concatenated proteins were congruent in both clade topology and relative branching length. and phytoplasmas clustered together with other mollicutes, forming a monophyletic group. Phytoplasmas diverged from spiroplasmas and mycoplasmas at early stages in the evolution of mollicutes. Branch lengths on the phylogenetic trees were noticeably longer in the clade, suggesting that the genes encoding the five sets of proteins evolved at a greater rate in this clade than in other clades. This observation reinforces the concept that mollicutes have rapidly evolving genomes.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.63655-0
2005-09-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/55/5/ijs552131.html?itemId=/content/journal/ijsem/10.1099/ijs.0.63655-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 [CrossRef]
    [Google Scholar]
  2. Barnett J. A. 2003; A history of research on yeasts 6: the main respiratory pathway. Yeast 20:1015–1044 [CrossRef]
    [Google Scholar]
  3. Besemer J., Borodovsky M. 1999; Heuristic approach to deriving models for gene finding. Nucleic Acids Res 27:3911–3920 [CrossRef]
    [Google Scholar]
  4. Bové J. M. 1997; Spiroplasmas: infectious agents of plants, arthropods and vertebrates. Wien Klin Wochenschr 109:604–612
    [Google Scholar]
  5. Brochier C., Philippe H., Moreira D. 2000; The evolutionary history of ribosomal protein RpS14: horizontal gene transfer at the heart of the ribosome. Trends Genet 16:529–533 [CrossRef]
    [Google Scholar]
  6. Brown J. R., Doolittle W. F. 1997; Archaea and the prokaryote-to-eukaryote transition. Microbiol Mol Biol Rev 61:456–502
    [Google Scholar]
  7. Brown J. R., Douady C. J., Italia M. J., Marshall W. E., Stanhope M. J. 2001; Universal trees based on large combined protein sequence data sets. Nat Genet 28:281–285 [CrossRef]
    [Google Scholar]
  8. Canback B., Andersson S. G., Kurland C. G. 2002; The global phylogeny of glycolytic enzymes. Proc Natl Acad Sci U S A 99:6097–6102 [CrossRef]
    [Google Scholar]
  9. Castresana J. 2000; Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17:540–552 [CrossRef]
    [Google Scholar]
  10. Chattopadhyay S., Chakrabarti J. 2003; Temporal changes in phosphoglycerate kinase coding sequences: a quantitative measure. J Comput Biol 10:83–93 [CrossRef]
    [Google Scholar]
  11. Choi J. H., Jung H. Y., Kim H. S., Cho H. G. 2000; phylodraw: a phylogenetic tree drawing system. Bioinformatics 16:1056–1058 [CrossRef]
    [Google Scholar]
  12. Ciccarese S., Tommasi S., Vonghia G. 1989; Cloning and cDNA sequence of the rat X-chromosome linked phosphoglycerate kinase. Biochem Biophys Res Commun 165:1337–1344 [CrossRef]
    [Google Scholar]
  13. Citti C., Maréchal-Drouard L., Saillard C., Weil J. H., Bové J. M. 1992; Spiroplasma citri UGG and UGA tryptophan codons: sequence of the two tryptophanyl-tRNAs and organization of the corresponding genes. J Bacteriol 174:6471–6478
    [Google Scholar]
  14. Daubin V., Gouy M., Perriere G. 2002; A phylogenomic approach to bacterial phylogeny: evidence of a core of genes sharing a common history. Genome Res 12:1080–1090 [CrossRef]
    [Google Scholar]
  15. Davis R. E., Worley J. F., Whitcomb R. F., Ishijima T., Steere R. L. 1972; Helical filaments produced by a mycoplasma-like organism associated with corn stunt disease. Science 176:521–523 [CrossRef]
    [Google Scholar]
  16. den Blaauwen T., Driessen A. J. 1996; Sec-dependent preprotein translocation in bacteria. Arch Microbiol 165:1–8 [CrossRef]
    [Google Scholar]
  17. Doolittle W. F. 1999; Phylogenetic classification and the universal tree. Science 284:2124–2129 [CrossRef]
    [Google Scholar]
  18. Felsenstein J. 1989; phylip – phylogeny inference package (version 3.2. Cladistics 5:164–166
    [Google Scholar]
  19. Felsenstein J. 2004 phylip (phylogeny inference package), version 3.6. Department of Genome Sciences University of Washington; Seattle, USA:
    [Google Scholar]
  20. Felsenstein J., Churchill G. A. 1996; A hidden Markov Model approach to variation among sites in rate of evolution. Mol Biol Evol 13:93–104 [CrossRef]
    [Google Scholar]
  21. Forterre P., Philippe H. 1999; Where is the root of the universal tree of life?. Bioessays 21:871–879 [CrossRef]
    [Google Scholar]
  22. Fothergill-Gilmore L. A. 1986; The evolution of the glycolytic pathway. Trends Biochem Sci 11:47–51 [CrossRef]
    [Google Scholar]
  23. Fox G. E., Wisotzkey J. D., Jurtshuk P. Jr 1992; How close is close: 16S rRNA sequence identity may not be sufficient to guarantee species identity. Int J Syst Bacteriol 42:166–170 [CrossRef]
    [Google Scholar]
  24. Gasparich G. E., Whitcomb R. F., Dodge D., French F. E., Glass J., Williamson D. L. 2004; The genus Spiroplasma and its non-helical descendants: phylogenetic classification, correlation with phenotype and roots of the Mycoplasma mycoides clade. Int J Syst Evol Microbiol 54:893–918 [CrossRef]
    [Google Scholar]
  25. Golding G. B., Gupta R. S. 1995; Protein-based phylogenies support a chimeric origin for the eukaryotic genome. Mol Biol Evol 12:1–6 [CrossRef]
    [Google Scholar]
  26. Gundersen D. E., Lee I. M., Rehner S. A., Davis R. E., Kingsbury D. T. 1994; Phylogeny of mycoplasmalike organisms (phytoplasmas): a basis for their classification. J Bacteriol 176:5244–5254
    [Google Scholar]
  27. Jeanmougin F., Thompson J. D., Gouy M., Higgins D. G., Gibson T. J. 1998; Multiple sequence alignment with clustal x. Trends Biochem Sci 23:403–405 [CrossRef]
    [Google Scholar]
  28. Jones D. T., Taylor W. R., Thornton J. M. 1992; The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci 8:275–282
    [Google Scholar]
  29. Klenk H., Zillig W. 1994; DNA-dependent RNA polymerase subunit B as a tool for phylogenetic reconstructions: branching topology of the archaeal domain. J Mol Evol 38:420–432 [CrossRef]
    [Google Scholar]
  30. Kumar S., Tamura K., Jakobsen I. B., Nei M. 2001; mega2: molecular evolutionary genetics analysis software. Bioinformatics 17:1244–1245 [CrossRef]
    [Google Scholar]
  31. Lee I.-M., Davis R. E., Gundersen-Rindal D. E. 2000; Phytoplasma: phytopathogenic mollicutes. Annu Rev Microbiol 54:221–255 [CrossRef]
    [Google Scholar]
  32. Makarova K. S., Ponomarev V. A., Koonin E. V. 2001; Two C or not two C: recurrent disruption of Zn-ribbons, gene duplication, lineage-specific gene loss, and horizontal gene transfer in evolution of bacterial ribosomal proteins. Genome Biol 2: research 0033.1–0033.14
    [Google Scholar]
  33. Mollet C., Drancourt M., Raoult D. 1997; rpoB sequence analysis as a novel basis for bacterial identification. Mol Microbiol 26:1005–1011 [CrossRef]
    [Google Scholar]
  34. Olsen G. J., Woese C. R. 1993; Ribosomal RNA: a key to phylogeny. FASEB J 7:113–123
    [Google Scholar]
  35. Oshima K., Kakizawa S., Nishigawa H. 8 other authors 2004; Reductive evolution suggested from the complete genome sequence of a plant-pathogenic phytoplasma. Nat Genet 36:27–29 [CrossRef]
    [Google Scholar]
  36. Philippe H., Forterre P. 1999; The rooting of the universal tree of life is not reliable. J Mol Evol 49:509–523 [CrossRef]
    [Google Scholar]
  37. Pollack J. D., Williams M. V., McElhaney R. N. 1997; The comparative metabolism of the mollicutes ( Mycoplasmas ): the utility for taxonomic classification and the relationship of putative gene annotation and phylogeny to enzymatic function in the smallest free-living cells. Crit Rev Microbiol 23:269–354 [CrossRef]
    [Google Scholar]
  38. Razin S., Yogev D., Naot Y. 1998; Molecular biology and pathogenicity of mycoplasmas. Microbiol Mol Biol Rev 62:1094–1156
    [Google Scholar]
  39. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849 [CrossRef]
    [Google Scholar]
  40. Stackebrandt E., Rainey F. A., Ward-Rainey N. L. 1997; Proposal for a new hierarchic classification system, Actinobacteria classis nov. Int J Syst Bacteriol 47:479–491 [CrossRef]
    [Google Scholar]
  41. Tatusov R. L., Natale D. A., Garkavtsev I. V. 7 other authors 2001; The COG database: new developments in phylogenetic classification of proteins from complete genomes. Nucleic Acids Res 29:22–28 [CrossRef]
    [Google Scholar]
  42. Teeling H., Lombardot T., Bauer M., Ludwig W., Glöckner F. O. 2004; Evaluation of the phylogenetic position of the planctomycete ‘ Rhodopirellula baltica ’ SH 1 by means of concatenated ribosomal protein sequences, DNA-directed RNA polymerase subunit sequences and whole genome trees. Int J Syst Evol Microbiol 54:791–801 [CrossRef]
    [Google Scholar]
  43. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
  44. Tjalsma H., Bolhuis A., Jongbloed J. D., Bron S., van Dijl J. M. 2000; Signal peptide-dependent protein transport in Bacillus subtilis : a genome-based survey of the secretome. Microbiol Mol Biol Rev 64:515–547 [CrossRef]
    [Google Scholar]
  45. Weisburg W. G., Tully J. G., Rose D. L. 9 other authors 1989; A phylogenetic analysis of the mycoplasmas: basis for their classification. J Bacteriol 171:6455–6467
    [Google Scholar]
  46. Woese C. R. 1987; Bacterial evolution. Microbiol Rev 51:221–271
    [Google Scholar]
  47. Wolf Y. I., Rogozin I. B., Grishin N. V., Tatusov R. L., Koonin E. V. 2001; Genome trees constructed using five different approaches suggest new major bacterial clades. BMC Evol Biol 1:8 [CrossRef]
    [Google Scholar]
  48. Wolf M., Müller T., Dandekar T., Pollack J. D. 2004; Phylogeny of Firmicutes with special reference to Mycoplasma ( Mollicutes ) as inferred from phosphoglycerate kinase amino acid sequence data. Int J Syst Evol Microbiol 54:871–875 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.63655-0
Loading
/content/journal/ijsem/10.1099/ijs.0.63655-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error