1887

Abstract

A taxonomic study was carried out on a bacterial strain, designated KM-45, isolated from forest soil collected near Daejeon, South Korea. Comparative 16S rRNA gene sequence analysis indicated a clear affiliation of this bacterium to the ‘’ and that it was related most closely to BCRC 17254, DSM 6150 and ATCC 33051 (92·4, 91·2 and 88·9 % 16S rRNA gene sequence similarity, respectively). Cells were Gram-negative, facultatively anaerobic, motile and rod-shaped. The strain grew well on R2A medium and utilized a broad spectrum of carbon sources. The G+C content of the genomic DNA was 58 mol% and the predominant ubiquinone was Q-8. Major fatty acids were C, C 7/iso-C 2-OH, C 7/9/12 and C cyclo. On the basis of the evidence presented, it is proposed that strain KM-45 should be placed in a novel genus and species, for which the name gen. nov., sp. nov. is proposed. The type strain is KM-45 (=KCTC 12358=NBRC 100961).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.63837-0
2005-11-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/55/6/2329.html?itemId=/content/journal/ijsem/10.1099/ijs.0.63837-0&mimeType=html&fmt=ahah

References

  1. Atlas R. M. 1993 Handbook of Microbiological Media , 2nd edn. Edited by Parks L. C. Boca Raton, FL: CRC Press;
    [Google Scholar]
  2. Buck J. D. 1982; Nonstaining (KOH) method for determination of Gram reactions of marine bacteria. Appl Environ Microbiol 44:992–993
    [Google Scholar]
  3. Cappuccino J. G., Sherman N. 2002 Microbiology: a Laboratory Manual , 6th edn. San Francisco: Benjamin Cummings;
    [Google Scholar]
  4. Chern L.-L., Stackebrandt E., Lee S.-F., Lee F.-L., Chen J.-K., Fu H.-M. 2004; Chitinibacter tainanensis gen. nov., sp. nov., a chitin-degrading aerobe from soil in Taiwan. Int J Syst Evol Microbiol 54:1387–1391 [CrossRef]
    [Google Scholar]
  5. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [CrossRef]
    [Google Scholar]
  6. Fitch W. M. 1971; Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416 [CrossRef]
    [Google Scholar]
  7. Hall T. A. 1999; BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98
    [Google Scholar]
  8. Kim M. K., Im W.-T., Ohta H., Lee M., Lee S.-T. 2005; Sphingopyxis granuli sp. nov., a β -glucosidase-producing bacterium in the family Sphingomonadaceae in α -4 subclass of the Proteobacteria . J Microbiol 43:152–157
    [Google Scholar]
  9. Kimura M. 1983 The Neutral Theory of Molecular Evolution Cambridge: Cambridge University Press;
    [Google Scholar]
  10. Komagata K., Suzuki K. 1987; Lipid and cell wall analysis in bacterial systematics. Methods Microbiol 19:161–206
    [Google Scholar]
  11. Kouker G., Jaeger K.-E. 1987; Specific and sensitive plate assay for bacterial lipases. Appl Environ Microbiol 53:211–213
    [Google Scholar]
  12. Kumar S., Tamura K., Nei M. 2004; mega3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163 [CrossRef]
    [Google Scholar]
  13. Logan N. A. 1989; Numerical taxonomy of violet-pigmented, gram-negative bacteria and description of Iodobacter fluviatile gen. nov., comb. nov.. Int J Syst Bacteriol 39:450–456 [CrossRef]
    [Google Scholar]
  14. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [CrossRef]
    [Google Scholar]
  15. MIDI 1999 Sherlock Microbial Identification System, Operating Manual , version 3.0. Newark, DE: MIDI, Inc;
    [Google Scholar]
  16. Moore D. D. 1995; Preparation and analysis of DNA. In Current Protocols in Molecular Biology Edited by Ausubel F. W., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K. New York: Wiley;
    [Google Scholar]
  17. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  18. Tanaka K., Nakamura K., Mikami E. 1991; Fermentation of S-citramalate, citrate, mesaconate, and pyruvate by a Gram-negative strictly anaerobic non-spore-former, Formivibrio citricus gen. nov., sp. nov.. Arch Microbiol 155:491–495 [CrossRef]
    [Google Scholar]
  19. Ten L. N., Im W.-T., Kim M.-K., Kang M.-S., Lee S.-T. 2004; Development of a plate technique for screening of polysaccharide-degrading microorganisms by using a mixture of insoluble chromogenic substrates. J Microbiol Methods 56:375–382 [CrossRef]
    [Google Scholar]
  20. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.63837-0
Loading
/content/journal/ijsem/10.1099/ijs.0.63837-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error