1887

Abstract

A Gram-negative, pink-coloured, rod-shaped, non-flagellated bacterium, designated CL-GP80, was isolated from a hypertrophic pond located within the campus of Seoul National University, Korea. Analysis of its 16S rRNA gene sequence revealed that strain CL-GP80 belongs to the family and is closely related to ATCC 13125 (95.8 % sequence similarity) and to other members of the genus (90.8–95.3 % similarity). Temperature and pH ranges for growth were 5–33 °C and pH 6–8, respectively. The DNA G+C content was 41.3 mol%. The major fatty acids were iso-C (37.0 %), iso-C 2-OH and/or C 7 (24.5 %), and iso-C 3-OH (11.3 %). Phenotypic, chemotaxonomic and phylogenetic analyses indicated that strain CL-GP80 could be assigned to the genus , but distinguished from recognized species of the genus. Strain CL-GP80 (=KCCM 42272=JCM 13399) is therefore proposed as the type strain of a novel species, for which the name sp. nov. is proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64045-0
2006-08-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/56/8/1831.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64045-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. 1990; Basic local alignment search tool. J Mol Biol 215:403–410 [CrossRef]
    [Google Scholar]
  2. Bauer A. W., Kirby W. M. M., Sherris J. C., Turck M. 1966; Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol 45:493–496
    [Google Scholar]
  3. Cole J. R., Chai B., Marsh T. L. 8 other authors 2003; The Ribosomal Database Project (RDP-II): previewing a new autoaligner that allows regular updates and the new prokaryotic taxonomy. Nucleic Acids Res 31:442–443 [CrossRef]
    [Google Scholar]
  4. Collins M. D. 1985; Analysis of isoprenoid quinones. Methods Microbiol 18:329–366
    [Google Scholar]
  5. Felsenstein J. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376 [CrossRef]
    [Google Scholar]
  6. Fitch W. M. 1971; Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416 [CrossRef]
    [Google Scholar]
  7. Gosink J. J., Woese C. R., Staley J. T. 1998; Polaribacter gen. nov., with three new species, P.irgensii sp. nov., P. franzmannii sp.nov. and P. filamentus sp. nov.,gas vacuolated polar marine bacteria of the Cytophaga–Flavobacterium–Bacteroides group and reclassification of ‘ Flectobacillus glomeratus ’ as Polaribacter glomeratus comb. nov. Int J Syst Bacteriol 48:223–235 [CrossRef]
    [Google Scholar]
  8. Hansen G. H., Sørheim R. 1991; Improved method for phenotypical characterization of marine bacteria. J Microbiol Methods 13:231–241 [CrossRef]
    [Google Scholar]
  9. Jeon Y. S., Chung H., Park S., Hur I., Lee J. H., Chun J. 2005; jphydit: a JAVA-based integrated environment for molecular phylogeny of ribosomal RNA sequences. Bioinformatics 21:3171–3173 [CrossRef]
    [Google Scholar]
  10. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism pp  21–132 Edited by Munro H. N. New York: Academic Press;
    [Google Scholar]
  11. Kato M., Muto Y., Tanaka-Bandoh K., Watanabe K., Ueno K. 1995; Sphingolipid composition in Bacteroides species. Anaerobe 1:135–139 [CrossRef]
    [Google Scholar]
  12. Keswani J., Whitman W. B. 2001; Relationship of 16S rRNA sequence similarity to DNA hybridization in prokaryotes. Int J Syst Evol Microbiol 51:667–678
    [Google Scholar]
  13. Kumar S., Tamura K., Nei M. 2004; mega 3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163 [CrossRef]
    [Google Scholar]
  14. Lane D. J. 1991; 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics pp  115–175 Edited by Stackebrandt E., Goodfellow M. Chichester: Wiley;
    [Google Scholar]
  15. Margesin R., Spröer C., Schumann P., Schinner F. 2003; Pedobacter cryoconitis sp. nov., a facultative psychrophile from alpine glacier cryoconite. Int J Syst Evol Microbiol 53:1291–1296 [CrossRef]
    [Google Scholar]
  16. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [CrossRef]
    [Google Scholar]
  17. Minnikin D. E., O'Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal K., Parlett J. H. 1984; An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241 [CrossRef]
    [Google Scholar]
  18. Posada D., Crandall K. A. 1998; modeltest: testing the model of DNA substitution. Bioinformatics 14:817–818 [CrossRef]
    [Google Scholar]
  19. Reichenbach H. 1989; Genus I. Cytophaga Winogradsky 1929, 577,AL emend.. In Bergey's Manual for Systematic Bacteriology vol  3 pp  2015–2050 Edited by Staley J. T., Bryant M. P., Pfennig N., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  20. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  21. Shivaji S., Chaturvedi P., Reddy G. S. N., Suresh K. 2005; Pedobacter himalayensis sp. nov., from the Hamta glacier located in the Himalayan mountain ranges of India. Int J Syst Evol Microbiol 55:1083–1088 [CrossRef]
    [Google Scholar]
  22. Smibert R. M., Krieg N. R. 1994; Phenotypic characterization. In Methods for General and Molecular Bacteriology pp  607–654 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  23. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849 [CrossRef]
    [Google Scholar]
  24. Steyn P. L., Segers P., Vancanneyt M., Sandra P., Kersters K., Joubert J. J. 1998; Classification of heparinolytic bacteria into a new genus, Pedobacter , comprising four species: Pedobacter heparinus comb.nov., Pedobacter piscium comb. nov., Pedobacter africanus sp. nov. and Pedobacter saltans sp. nov.Proposal of the family Sphingobacteriaceae fam. nov. Int J Syst Bacteriol 48:165–177 [CrossRef]
    [Google Scholar]
  25. Swofford D. L. 1998 paup* – Phylogenetic Analysis Using Parsimony, version 4 Sunderland, MA: Sinauer Associates;
    [Google Scholar]
  26. Takeuchi M., Yokota A. 1992; Proposals of Sphingobacterium faecium sp. nov., Sphingobacterium piscium sp. nov., Sphingobacterium heparinum comb. nov., Sphingobacterium thalpophilum comb. nov. and two genospecies of the genus Sphingobacterium , and synonymy of Flavobacterium yabuuchiae and Sphingobacterium spiritivorum . J Gen Appl Microbiol 38:465–482 [CrossRef]
    [Google Scholar]
  27. Vanparys B., Heylen K., Lebbe L., De Vos P. 2005; Pedobacter caeni sp. nov., a novel species isolated from a nitrifying inoculum. Int J Syst Evol Microbiol 55:1315–1318 [CrossRef]
    [Google Scholar]
  28. Zimmermann J., Langer R., Cooney C. L. 1990; Specific plate assay for bacterial heparinase. Appl Environ Microbiol 56:3593–3594
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64045-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64045-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error