1887

Abstract

Three strains, 002-048, RB589 and 002-051, isolated from field soil in Japan, were characterized using a polyphasic approach. The isolates were Gram-positive, strictly aerobic, non-motile rods that formed ellipsoidal, subterminal endospores. The chemotaxonomic characteristics of these isolates included the presence of -diaminopimelic acid as the cell-wall peptidoglycan, anteiso-C and anteiso-C as the major cellular fatty acids and MK-7 as the predominant menaquinone. The DNA G+C content was 44–46 mol%. Phylogenetic analyses based on 16S rRNA gene sequences revealed that the isolates represented an independent lineage that is distinct from related taxa and exhibited less than 94.3 % sequence similarity with respect to those taxa. Moreover, a DNA–DNA hybridization analysis showed that the three isolates represented two species. On the basis of their phenotypic and phylogenetic distinctiveness, the isolates represent two species within a novel genus, for which the names gen. nov., sp. nov. and sp. nov. are proposed. The type strain of is 002-048 (=IAM 15309=KCTC 13936) and the type strain of is 002-051 (=IAM 15310=KCTC 13937).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64340-0
2007-01-01
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/57/1/51.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64340-0&mimeType=html&fmt=ahah

References

  1. Ash C., Farrow J. A. E., Wallbanks S., Collins M. D. 1991; Phylogenetic heterogeneity of the genus Bacillus revealed by comparative analysis of small-subunit-ribosomal RNA sequences. Lett Appl Microbiol 13:202–206
    [Google Scholar]
  2. Collins M. D., Jones D. 1981; Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implications. Microbiol Rev 45:316–354
    [Google Scholar]
  3. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in micro-dilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229 [CrossRef]
    [Google Scholar]
  4. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [CrossRef]
    [Google Scholar]
  5. García M. T., Gallego V., Ventosa A., Mellado E. 2005; Thalassobacillus devorans gen. nov., sp. nov., a moderately halophilic, phenol-degrading, Gram-positive bacterium. Int J Syst Evol Microbiol 55:1789–1795 [CrossRef]
    [Google Scholar]
  6. Heyndrickx M., Lebbe L., Kersters K., De Vos P., Forsyth C., Logan N. A. 1998; Virgibacillus : a new genus to accommodate Bacillus pantothenticus (Proom and Knight 1950). Emended description of Virgibacillus pantothenticus . Int J Syst Bacteriol 48:99–106 [CrossRef]
    [Google Scholar]
  7. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [CrossRef]
    [Google Scholar]
  8. Kumar S., Tamura K., Jakobsen I. B., Nei M. 2004; mega3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163 [CrossRef]
    [Google Scholar]
  9. Lee J. S., Lim J. M., Lee K. C., Lee J. C., Park Y. H., Kim C. J. 2006; Virgibacillus koreensis sp. nov., a novel bacterium from a salt field, and transfer of Virgibacillus picturae comb. nov. with emended descriptions. . Int J Syst Evol Microbiol 56:251–257 [CrossRef]
    [Google Scholar]
  10. Lim J. M., Jeon C. O., Park D. J., Kim H. R., Yoon B. J., Kim C. J. 2005a; Pontibacillus marinus sp. nov., a moderately halophilic bacterium from a solar saltern, and emended description of the genus Pontibacillus . Int J Syst Evol Microbiol 55:1027–1031 [CrossRef]
    [Google Scholar]
  11. Lim J. M., Jeon C. O., Song S. M., Kim C. J. 2005b; Pontibacillus chungwhensis gen. nov., sp. nov., a moderately halophilic Gram-positive bacterium from a solar saltern in Korea. Int J Syst Evol Microbiol 55:165–170 [CrossRef]
    [Google Scholar]
  12. Lu J., Nogi Y., Takami H. 2001; Oceanobacillus iheyensis gen. nov., sp. nov., a deep-sea extremely halotolerant and alkaliphilic species isolated from a depth of 1050 m on the Iheya Ridge. FEMS Microbiol Lett 205:291–297 [CrossRef]
    [Google Scholar]
  13. Ludwig W., Strunk O., Klugbauer S., Klugbauer N., Weizenegger M., Neumaier J., Bachleitner M., Schleifer K.-H. 1998; Bacterial phylogeny based on comparative sequence analysis. Electrophoresis 19:554–568 [CrossRef]
    [Google Scholar]
  14. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 3:208–218 [CrossRef]
    [Google Scholar]
  15. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [CrossRef]
    [Google Scholar]
  16. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  17. Schleifer K. H., Kandler O. 1972; Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36:407–477
    [Google Scholar]
  18. Spring S., Ludwig W., Marquez M. C., Ventosa A., Schleifer K. H. 1996; Halobacillus gen. nov., with descriptions of Halobacillus litoralis sp.nov. and Halobacillus trueperi sp. nov., and transfer of Sporosarcina halophila to Halobacillus halophilus comb. nov. Int J Syst Bacteriol 46:492–496 [CrossRef]
    [Google Scholar]
  19. Stackebrandt E., Frederiksen W., Garrity G. M., Grimont P. A. D., Kämpfer P., Maiden M. C. J., Nesme X., Rossello-Mora R., Swings J. other authors 2002; Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int J Syst Evol Microbiol 52:1043–1047 [CrossRef]
    [Google Scholar]
  20. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  21. Wainø M., Tindall B. J., Schumann P., Ingvorsen K. 1999; Gracilibacillus gen. nov., with description of Gracilibacillus halotolerans gen. nov., sp. nov.; transfer of Bacillus dipsosauri to Gracilibacillus dipsosauri comb. nov., and Bacillus salexigens to the genus Salibacillus gen. nov., as Salibacillus salexigens comb. nov. Int J Syst Bacteriol 49:821–831 [CrossRef]
    [Google Scholar]
  22. Yoon J. H., Kang K. H., Park Y. H. 2002; Lentibacillus salicampi gen. nov., sp nov., a moderately halophilic bacterium isolated from a salt field in Korea. Int J Syst Evol Microbiol 52:2043–2048 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64340-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64340-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error