1887

Abstract

A lemon-shaped marine bacterium, strain CL-SP20, isolated from hypersaline water from a solar saltern in Korea, was characterized in terms of its physiological and biochemical features, its fatty acid profile and its phylogenetic position based on 16S rRNA gene sequences. Analysis of the 16S rRNA gene sequence revealed a clear affiliation with the lineage (91.0–96.3 % similarity) of the family . However, strain CL-SP20 did not form a robust clade with any species of the clade, forming a distinct subline. Strain CL-SP20 is non-motile and forms beige colonies on marine agar. The strain is able to grow with sea salts at concentrations in the range 1–10 %, with optimal growth between 5 and 6 %. It grows at temperatures in the range 15–40 °C and at pH 6–10. The strain cannot oxidize thiosulfate. The fatty acids are dominated by 18 : 17 (54.3 %) and 19 : 0 cyclo 8 (20.4 %). The DNA G+C content is 67.3 mol%. According to the physiological data, fatty acid composition and phylogenetic analysis of the 16S rRNA gene sequence, strain CL-SP20 represents a novel species in a novel genus of the family , for which the name gen. nov., sp. nov. is proposed. The type strain of is CL-SP20 (=KCCM 42116=JCM 13036).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64373-0
2006-12-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/56/12/2799.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64373-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. 1990; Basic local alignment search tool. J Mol Biol 215:403–410 [CrossRef]
    [Google Scholar]
  2. Buchan A., González J. M., Moran M. A. 2005; Overview of the marine Roseobacter lineage. Appl Environ Microbiol 71:5665–5677 [CrossRef]
    [Google Scholar]
  3. Choi D. H., Yi H., Chun J., Cho B. C. 2006a; Jannaschia seosinensis sp. nov., isolated from hypersaline water of a solar saltern in Korea. Int J Syst Evol Microbiol 56:45–49 [CrossRef]
    [Google Scholar]
  4. Choi D. H., Kim Y. G., Hwang C. Y., Yi H., Chun J., Cho B. C. 2006b; Tenacibaculum litoreum sp. nov., isolated from tidal flat sediment. Int J Syst Evol Microbiol 56:635–640 [CrossRef]
    [Google Scholar]
  5. Cole J. R., Chai B., Marsh T. L. 8 other authors 2003; The Ribosomal Database Project (RDP-II): previewing a new autoaligner that allows regular updates and the new prokaryotic taxonomy. Nucleic Acids Res 31:442–443 [CrossRef]
    [Google Scholar]
  6. Felsenstein J. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376 [CrossRef]
    [Google Scholar]
  7. Fitch W. M. 1971; Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416 [CrossRef]
    [Google Scholar]
  8. Giovannoni S. J., Rappé M. 2000; Evolution, diversity and molecular ecology of marine prokaryotes. In Microbial Ecology of the Oceans pp  47–84 Edited by Kirchman D. L. New York: Wiley;
    [Google Scholar]
  9. González J. M., Kiene R. P., Moran M. 1999; Transformation of sulfur compounds by an abundant lineage of marine bacteria in the α -subclass of the class Proteobacteria. Appl Environ Microbiol 65:3810–3819
    [Google Scholar]
  10. Hansen G. H., Sørheim R. 1991; Improved method for phenotypical characterization of marine bacteria. J Microbiol Methods 13:231–241 [CrossRef]
    [Google Scholar]
  11. Jeon Y.-S., Chung H., Park S., Hur I., Lee J.-H., Chun J. 2005; jphydit: a java-based integrated environment for molecular phylogeny of ribosomal RNA sequences. Bioinformatics 21:3171–3173 [CrossRef]
    [Google Scholar]
  12. Jonkers H. M., Abed R. M. M. 2003; Identification of aerobic heterotrophic bacteria from the photic zone of a hypersaline microbial mat. Aquat Microb Ecol 30:127–133 [CrossRef]
    [Google Scholar]
  13. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism pp  21–132 Edited by Munro H. N. New York: Academic Press;
    [Google Scholar]
  14. Kumar S., Tamura K., Nei M. 2004; mega3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163 [CrossRef]
    [Google Scholar]
  15. Labrenz M., Collins M. D., Lawson P. A., Tindall B. J., Braker G., Hirsch P. 1998; Antarctobacter heliothermus gen. nov., sp. nov. a budding bacterium from hypersaline and heliothermal Ekho Lake. Int J Syst Bacteriol 48:1363–1372 [CrossRef]
    [Google Scholar]
  16. Labrenz M., Collins M. D., Lawson P. A., Tindall B. J., Schumann P., Hirsch P. 1999; Roseovarius tolerans gen. nov., sp. nov. a budding bacterium with variable bacteriochlorophyll a production from hypersaline Ekho Lake. Int J Syst Bacteriol 49:137–147 [CrossRef]
    [Google Scholar]
  17. Labrenz M., Tindall B. J., Lawson P. A., Collins M. D., Schumann P., Hirsch P. 2000; Staleya guttiformis gen. nov., sp. nov., and Sulfitobacter brevis sp. nov., α -3- Proteobacteria from hypersaline, heliothermal and meromictic Antarctic Ekho Lake. Int J Syst Evol Microbiol 50:303–313 [CrossRef]
    [Google Scholar]
  18. Labrenz M., Lawson P. A., Tindall B. J., Collins M. D., Hirsch P. 2005; Roseisalinus antarcticus gen. nov., sp. nov. a novel aerobic bacteriochlorophyll a -producing α -proteobacterium isolated from hypersaline Ekho Lake, Antarctica. Int J Syst Evol Microbiol 55:41–47 [CrossRef]
    [Google Scholar]
  19. Lane D. J. 1991; 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics pp  115–175 Edited by Stackebrandt E., Goodfellow M. Chichester: Wiley;
    [Google Scholar]
  20. Lyman J., Fleming R. H. 1940; Composition of sea water. J Mar Res 3:134–146
    [Google Scholar]
  21. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3:208–218 [CrossRef]
    [Google Scholar]
  22. Martínez-Cánovas M. J., Quesada E., Martínez-Checa F., del Moral A., Béjar V. 2004; Salipiger mucescens gen. nov., sp. nov., a moderately halophilic, exopolysaccharide-producing bacterium isolated from hypersaline soil, belonging to the α - Proteobacteria . Int J Syst Evol Microbiol 54:1735–1740 [CrossRef]
    [Google Scholar]
  23. Martínez-Checa F., Quesada E., Martínez-Cánovas M. J., Llamas I., Béjar V. 2005 Palleronia marisminoris gen. nov., sp. nov., a moderately halophilic, exopolysaccharide-producing bacterium belonging to the ‘ Alphaproteobacteria ’, isolated from a saline soil. Int J Syst Evol Microbiol 552525–2530 [CrossRef]
  24. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [CrossRef]
    [Google Scholar]
  25. Ostle A. G., Holt J. G. 1982; Nile blue A as fluorescent stain for poly- β -hydroxybutyrate. Appl Environ Microbiol 44:238–241
    [Google Scholar]
  26. Posada D., Crandall K. A. 1998; modeltest: testing the model of DNA substitution. Bioinformatics 14:817–818 [CrossRef]
    [Google Scholar]
  27. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  28. Selje N., Simon M., Brinkhoff T. 2004; A newly discovered Roseobacter cluster in temperate and polar oceans. Nature 427:445–448 [CrossRef]
    [Google Scholar]
  29. Shiba T. 1991; Roseobacter litoralis gen. nov., sp. nov., and Roseobacter denitrificans sp. nov., aerobic pink-pigmented bacteria which contain bacteriochlorophyll a . Syst Appl Microbiol 14:140–145 [CrossRef]
    [Google Scholar]
  30. Smibert R. M., Krieg N. R. 1994; Phenotypic characterization. In Methods for General and Molecular Bacteriology pp  607–654 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  31. Sorokin D. Y., Tourova T. P., Muyzer G. 2005; Citreicella thiooxidans gen. nov., sp. nov. a novel lithoheterotrophic sulfur-oxidizing bacterium from the Black Sea. Syst Appl Microbiol 28:679–687 [CrossRef]
    [Google Scholar]
  32. Suzuki T., Muroga Y., Takahama M., Nishimura Y. 1999; Roseivivax halodurans gen. nov., sp. nov., and Roseivivax halotolerans sp. nov., aerobic bacteriochlorophyll-containing bacteria isolated from a saline lake. Int J Syst Bacteriol 49:629–634 [CrossRef]
    [Google Scholar]
  33. Swofford D. L. 1998 paup* – phylogenetic analysis using parsimony and other methods, version 4 Sunderland, MA: Sinauer Associates;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64373-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64373-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error