1887

Abstract

A spore-forming, anaerobic, syntrophic fatty-acid-oxidizing bacterium, strain 19J-3, was isolated from a distilled-spirit-fermenting cellar in Hebei Province, China. The cells were slightly curved rods with a spore at the end of the cell. The optimal temperature for growth was around 37 °C and growth occurred in the range 25–45 °C. The pH range for growth was 6.5–8.5 and the optimum pH was 7.0–7.5. Crotonate was the only substrate that allowed the strain to grow in pure culture. However, the strain could oxidize saturated fatty acids with four to nine carbon atoms syntrophically in co-culture with DSM 1535. The strain was not able to utilize sulfate, sulfite, thiosulfate, DMSO, nitrate, fumarate or Fe(III) as electron acceptor. The DNA base composition was 48.8 mol% G+C. Phylogenetic analysis based on the 16S rRNA gene sequence revealed that strain 19J-3 was related to members of the family and most closely to DSM 3014 (94.3 % similarity) and subsp. DSM 2245 (93.6 % similarity). Considering the phylogenetic relationship and phenotypic features, strain 19J-3 (=CGMCC 1.5041=JCM 13582) is designated as the type strain of a novel species of the genus , sp. nov. Based on the close phylogenetic relationship between the genera and , the presence of sporulation-specific genes in the genome of subsp. DSM 2245 and the description of a spore-forming member of , ‘ subsp. ’, we propose the assignment of to the genus as comb. nov.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64377-0
2006-10-01
2024-03-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/56/10/2331.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64377-0&mimeType=html&fmt=ahah

References

  1. Beaty P. S., McInerney M. J. 1987; Growth of Syntrophomonas wolfei in pure culture on crotonate. Arch Microbiol 147:389–393 [CrossRef]
    [Google Scholar]
  2. Britz T. J., Tracey R. P. 1983; Isolation and characterization of red-pigmented Arachnia species from Salmonella enrichment selenite broth. FEMS Microbiol Lett 18:239–243 [CrossRef]
    [Google Scholar]
  3. Brown D. P., Genova-Raeva L., Green B. D., Wilkinson S. R., Young M., Youngman P. 1994; Characterization of spo 0A homologs in diverse Bacillus and Clostridium species identifies DNA binding domain. Mol Microbiol 14:411–426 [CrossRef]
    [Google Scholar]
  4. Burdon K. L. 1946; Fatty material in bacteria and fungi revealed by staining dried, fixed slide preparations. J Bacteriol 52:665–678
    [Google Scholar]
  5. Collins M. D., Lawson P. A., Willems A., Cordoba J. J., Fernandez-Garayzabal J., Garcia P., Cai J., Hippe H., Farrow J. A. E. 1994; The phylogeny of the genus Clostridium : proposal of five new genera and eleven new species combinations. Int J Syst Bacteriol 44:812–826 [CrossRef]
    [Google Scholar]
  6. Cook G. M., Janssen P. H., Morgan H. W. 1991; Endospore formation by Thermoanaerobium brockii HTD4. Syst Appl Microbiol 14:240–244 [CrossRef]
    [Google Scholar]
  7. Farrow J. A. E., Lawson P. A., Hippe H., Gauglitz U., Collins M. D. 1995; Phylogenetic evidence that the gram-negative nonsporulating bacterium Tissierella ( Bacteroides ) praeacuta is a member of the Clostridium subphylum of the gram-positive bacteria and description of Tissierella creatinini sp. nov. Int J Syst Bacteriol 45:436–440 [CrossRef]
    [Google Scholar]
  8. Hungate R. E. 1969; A roll tube method for cultivation of strict anaerobes. Methods Microbiol 3B:117–132
    [Google Scholar]
  9. Jackson B. E., Bhupathiraju V. K., Tanner R. S., Woese C. R., McInerney M. J. 1999; Syntrophus aciditrophicus sp. nov., a new anaerobic bacterium that degrades fatty acids and benzoate in syntrophic association with hydrogen-using microorganisms. Arch Microbiol 171:107–114 [CrossRef]
    [Google Scholar]
  10. Liu Y., Balkwill D. L., Aldrich H. C., Drake G. R., Boone D. R. 1999; Characterization of the anaerobic propionate-degrading syntrophs Smithella propionica gen nov., sp. nov. and Syntrophobacter wolinii . Int J Syst Bacteriol 49545–556 [CrossRef]
    [Google Scholar]
  11. Lorowitz W. H., Zhao H., Bryant M. P. 1989; Syntrophomonas wolfei subsp. saponavida subsp. nov., a long-chain-fatty-acid-degrading, anaerobic syntrophic bacterium; Syntrophomonas wolfei subsp. wolfei subsp. nov.; and emended descriptions of the genus and species. Int J Syst Bacteriol 39:122–126 [CrossRef]
    [Google Scholar]
  12. Mackie R. I., Bryant M. P. 1981; Metabolic activity of fatty acid-oxidizing bacteria and the contribution of acetate, propionate, and butyrate, and CO2 to methanogenesis in cattle waste at 40 and 60 °C. Appl Environ Microbiol 41:1363–1373
    [Google Scholar]
  13. McInerney M. J., Bryant M. P., Pfennig N. 1979; Anaerobic bacterium that degrades fatty acids in syntrophic association with methanogens. Arch Microbiol 122:129–135 [CrossRef]
    [Google Scholar]
  14. McInerney M. J., Bryant M. P., Hespell R. B., Costerton J. W. 1981; Syntrophomonas wolfei gen. nov. sp. nov. an anaerobic, syntrophic, fatty acid-oxidizing bacterium. Appl Environ Microbiol 41:1029–1039
    [Google Scholar]
  15. Roy F., Samain E., Dubourguier H., Albagnac G. 1986; Syntrophomonas sapovorans sp. nov., a new obligately proton reducing anaerobe oxidizing saturated and unsaturated long chain fatty acids. Arch Microbiol 145:142–147 [CrossRef]
    [Google Scholar]
  16. Schink B. 1997; Energetics of syntrophic cooperation in methanogenic degradation. Mol Biol Rev 61:262–280
    [Google Scholar]
  17. Sekiguchi Y., Kamagata Y., Nakamura K., Ohashi A., Harada H. 2000; Syntrophothermus lipocalidus gen. nov., sp. nov. a novel thermophilic, syntrophic, fatty-acid-oxidizing anaerobe which utilizes isobutyrate. Int J Syst Evol Microbiol 50:771–779 [CrossRef]
    [Google Scholar]
  18. Stieb M., Schink B. 1985; Anaerobic oxidation of fatty acids by Clostridium bryantii sp. nov., a sporeforming, obligately syntrophic bacterium. Arch Microbiol 140:387–390 [CrossRef]
    [Google Scholar]
  19. Svetlitshnyi V., Rainey F., Wiegel J. 1996; Thermosyntropha lipolytica gen. nov., sp. nov., a lipolytic, anaerobic, alkalitolerant, thermophilic bacterium utilizing short- and long-chain fatty acids in syntrophic coculture with a methanogenic archaeum. Int J Syst Bacteriol 46:1131–1137 [CrossRef]
    [Google Scholar]
  20. Weisburg W. G., Barn S. M., Pelletier D. A., Lane D. J. 1991; 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703
    [Google Scholar]
  21. Wu C., Liu X., Dong X. 2006; Syntrophomonas erecta subsp. sporosyntropha subsp. nov., a spore-forming bacterium that degrades short chain fatty acids in co-culture with methanogens. Syst Appl Microbiol 29:457–462 [CrossRef]
    [Google Scholar]
  22. Zhang C., Liu X., Dong X. 2004; Syntrophomonas curvata sp. nov., an anaerobe that degrades fatty acids in co-culture with methanogens. Int J Syst Evol Microbiol 54:969–973 [CrossRef]
    [Google Scholar]
  23. Zhang C., Liu X., Dong X. 2005; Syntrophomonas erecta sp. nov., an novel anaerobe that syntrophically degrades short-chain fatty acids. Int J Syst Evol Microbiol 55:799–803 [CrossRef]
    [Google Scholar]
  24. Zhao H., Yang D., Woese C. R., Bryant M. P. 1990; Assignment of Clostridium bryantii to Syntrophospora bryantii gen. nov., comb. nov. on the basis of a 16S rRNA sequence analysis of its crotonate-grown pure culture. Int J Syst Bacteriol 40:40–44 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64377-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64377-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error