1887

Abstract

Two novel strains of halophilic archaea, DX253 and GY252, were isolated from Zodletone Spring, a low-salt, sulfide- and sulfur-rich spring in south-western Oklahoma, USA. The cells were cocci or coccobacilli and occurred singly or in pairs. The two strains grew in a wide range of salt concentrations (0.8–5.1 M) and required at least 5 mM Mg for growth. The pH range for growth was 5–7.5 and the temperature range was 25–45 °C. In addition to having the capacity to grow at relatively low salt concentrations, cells remained viable in distilled water after prolonged incubation. The two diether phospholipids that are typical of members of the order , phosphatidylglycerol and phosphatidylglycerol phosphate methyl ester, were present. Phosphatidylglycerol sulfate and two unidentified glycolipids were also detected. Each strain had two distinct 16S rRNA gene sequences that were only 89.5–90.8 % similar to sequences from the most closely related cultured and recognized species within the order . The DNA G+C content of the type strain was found to be 60.5 mol%. The closest relatives were clones and uncharacterized isolates obtained from coastal salt-marsh sediments with salinities equivalent to that of seawater. The physiological, biochemical and phylogenetic differences between strains DX253 and GY252 and other previously described genera of extremely halophilic archaea suggest that these novel strains represent a novel species and genus within the family , for which the name gen. nov., sp. nov. is proposed. The type strain is DX253 (=JCM 13897=DSM 18195=ATCC BAA-1313=KCTC 4006).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64464-0
2007-01-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/57/1/19.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64464-0&mimeType=html&fmt=ahah

References

  1. Acinas S. G., Marcelino L. A., Klepac-Ceraj V., Polz M. F. 2004; Divergence and redundancy of 16S rRNA sequences in genomes with multiple rrn operons. J Bacteriol 186:2629–2635 [CrossRef]
    [Google Scholar]
  2. Baker G. C., Smith J. J., Cowan D. A. 2003; Review and re-analysis of domain-specific 16S primers. J Microbiol Methods 55:541–555 [CrossRef]
    [Google Scholar]
  3. Balch W. E., Wolfe R. S. 1976; New approach to the cultivation of methanogenic bacteria: 2-mercaptoethanesulfonic acid (HS-CoM)-dependent growth of Methanobacterium ruminantium in a pressurized atmosphere. Appl Environ Microbiol 32:781–791
    [Google Scholar]
  4. Bolhuis H., te Poele E. M., Rodriguez-Valera F. 2004; Isolation and cultivation of Walsby's square archaeon. Environ Microbiol 6:1287–1291 [CrossRef]
    [Google Scholar]
  5. Boucher Y., Douady C. J., Sharma A. K., Kamekura M., Doolittle W. F. 2004; Intragenomic heterogeneity and intergenomic recombination among haloarchaeal rRNA genes. J Bacteriol 186:3980–3990 [CrossRef]
    [Google Scholar]
  6. Bryant M. P. 1972; Commentary on the Hungate technique for culture of anaerobic bacteria. Am J Clin Nutr 25:1324–1328
    [Google Scholar]
  7. Burns D. G., Camakaris H. M., Janssen P. H., Dyall-Smith M. L. 2004; Cultivation of Walsby's square haloarchaeon. FEMS Microbiol Lett 238:469–473
    [Google Scholar]
  8. Dennis P. P., Ziesche S., Mylvaganam S. 1998; Transcription analysis of two disparate rRNA operons in the halophilic archaeon Haloarcula marismortui . J Bacteriol 180:4804–4813
    [Google Scholar]
  9. Dussault H. P. 1955; An improved technique for staining red halophilic bacteria. J Bacteriol 70:484–485
    [Google Scholar]
  10. Elshahed M. S., Senko J. M., Najar F. Z., Kenton S. M., Roe B. A., Dewers T. A., Spear J. R., Krumholz L. R. 2003; Bacterial diversity and sulfur cycling in a mesophilic sulfide-rich spring. Appl Environ Microbiol 69:5609–5621 [CrossRef]
    [Google Scholar]
  11. Elshahed M. S., Najar F. Z., Roe B. A., Oren A., Dewers T. A., Krumholz L. R. 2004a; Survey of archaeal diversity reveals an abundance of halophilic Archaea in a low-salt, sulfide- and sulfur-rich spring. Appl Environ Microbiol 70:2230–2239 [CrossRef]
    [Google Scholar]
  12. Elshahed M. S., Savage K. N., Oren A., Gutierrez M. C., Ventosa A., Krumholz L. R. 2004b; Haloferax sulfurifontis sp. nov., a halophilic archaeon isolated from a sulfide- and sulfur-rich spring. Int J Syst Evol Microbiol 54:2275–2279 [CrossRef]
    [Google Scholar]
  13. Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. (editors) 1994 Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology;
    [Google Scholar]
  14. Gibbons N. E. 1974; Family V. Halobacteriaceae fam. nov. In Bergey's Manual of Determinative Bacteriology , 8th edn. pp  269–273 Edited by Buchanan R. E., Gibbons N. E. Baltimore: Williams & Wilkins;
    [Google Scholar]
  15. Goh F., Leuko S., Allen M. A., Bowman J. P., Kamekura M., Neilan B. A., Burns B. P. 2006; Halococcus hamelinensis sp. nov., a novel halophilic archaeon isolated from stromatolites in Shark Bay, Australia. Int J Syst Evol Microbiol 56:1323–1329 [CrossRef]
    [Google Scholar]
  16. Grant W. D., Kamekura M., McGenity T. J., Ventosa A. 2001; Order Halobacteriales . In Bergey's Manual of Systematic Bacteriology , 2nd edn. vol 1 pp  294–334 Edited by Boone D. R., Castenholz R. W., Garrity G. M. New York: Springer;
    [Google Scholar]
  17. Gutierrez M. C., Kamekura M., Holmes M. L., Dyall-Smith M. L., Ventosa A. 2002; Taxonomic characterization of Haloferax sp. (“H. alicantei ”) strain Aa 2.2: description of Haloferax lucentensis sp. nov.. Extremophiles 6479–483 [CrossRef]
    [Google Scholar]
  18. Munson M. A., Nedwell D. B., Embley T. M. 1997; Phylogenetic diversity of Archaea in sediment samples from a coastal salt marsh. Appl Environ Microbiol 63:4729–4733
    [Google Scholar]
  19. Mylvaganam S., Dennis P. P. 1992; Sequence heterogeneity between the two genes encoding 16S rRNA from the halophilic archaebacterium Haloarcula marismortui . Genetics 130:399–410
    [Google Scholar]
  20. Oren A. 1994; The ecology of the extremely halophilic archaea. FEMS Microbiol Rev 13:415–440 [CrossRef]
    [Google Scholar]
  21. Oren A. 2000 The order Halobacteriales . In The Prokaryotes: an Evolving Electronic Resource for the Microbiological Community , release 3.2 Edited by Dworkin M., Falkow S., Rosenberg E., Schleifer K.-H., Stackebrandt E. New York: Springer; http://141.150.157.117:8080/prokPUB/index.htm
    [Google Scholar]
  22. Oren A. 2002 Halophilic Microorganisms and their Environments Dordrecht: Kluwer;
    [Google Scholar]
  23. Oren A., Duker S., Ritter S. 1996; The polar lipid composition of Walsby's square bacterium. FEMS Microbiol Lett 138:135–140 [CrossRef]
    [Google Scholar]
  24. Oren A., Ventosa A., Grant W. D. 1997; Proposed minimal standards for description of new taxa in the order Halobacteriales . Int J Syst Bacteriol 47:233–238 [CrossRef]
    [Google Scholar]
  25. Purdy K. J., Cresswell-Maynard T. D., Nedwell D. B., McGenity T. J., Grant W. D., Timmis K. N., Embley T. M. 2004; Isolation of haloarchaea that grow at low salinities. Environ Microbiol 6:591–595 [CrossRef]
    [Google Scholar]
  26. Rodriguez-Valera F., Ruiz-Berraquero F., Ramos-Cormenzana A. 1979; Isolation of extreme halophiles from seawater. Appl Environ Microbiol 38:164–165
    [Google Scholar]
  27. Senko J. M., Campbell B. S., Henricksen J. R., Elshahed M. S., Dewers T. A., Krumholz L. R. 2004; Barite deposition resulting from phototrophic sulfide-oxidizing bacterial activity. Geochim Cosmochim Acta 68:773–780 [CrossRef]
    [Google Scholar]
  28. Tajima K., Nagamine T., Matsui H., Nakamura M., Aminov R. I. 2001; Phylogenetic analysis of archaeal 16S rRNA libraries from the rumen suggests the existence of a novel group of archaea not associated with known methanogens. FEMS Microbiol Lett 200:67–72 [CrossRef]
    [Google Scholar]
  29. Takai K., Komatsu T., Inagaki F., Horikoshi K. 2001; Distribution of archaea in a black smoker chimney structure. Appl Environ Microbiol 67:3618–3629 [CrossRef]
    [Google Scholar]
  30. Takashina T., Hamamoto T., Otozai K., Grant W. D., Horikoshi K. 1990; Haloarcula japonica sp. nov., a new triangular halophilic archaebacterium. Syst Appl Microbiol 13:177–181 [CrossRef]
    [Google Scholar]
  31. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
  32. Vreeland R. H., Straight S., Krammes J., Dougherty K., Rosenzweig W. D., Kamekura M. 2002; Halosimplex carlsbadense gen. nov., sp. nov., a unique halophilic archaeon, with three 16S rRNA genes, that grows only in defined medium with glycerol and acetate or pyruvate. Extremophiles 6:445–452 [CrossRef]
    [Google Scholar]
  33. Walsby A. E. 1980; A square bacterium. Nature 283:69–71 [CrossRef]
    [Google Scholar]
  34. Widdel F., Pfennig N. 1999 The genus Desulfuromonas and other Gram-negative sulfur-reducing Eubacteria. In The Prokaryotes: an Evolving Electronic Resource for the Microbiological Community , release 3.0 Edited by Dworkin M., Falkow S., Rosenberg E., Schleifer K.-H., Stackebrandt E. New York: Springer; http://141.150.157.117:8080/prokPUB/index.htm
    [Google Scholar]
  35. Xue Y., Fan H., Ventosa A., Grant W. D., Jones B. E., Cowan D. A., Ma Y. 2005; Halalkalicoccus tibetensis gen. nov., sp. nov., representing a novel genus of haloalkaliphilic archaea. Int J Syst Evol Microbiol 55:2501–2505 [CrossRef]
    [Google Scholar]
  36. Younger P. 1986; Barite travertine from Southwestern Oklahoma and Western-Central Colarado. MS thesis Oklahoma State University;
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64464-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64464-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error