1887

Abstract

A Gram-negative, rod-shaped bacterium, strain 3-2W4, was isolated from the aeration tank of a wastewater treatment plant in Zurich and was found to have the exceptional capacity to degrade synthetic -peptides. 16S rRNA gene sequence analysis showed that strain 3-2W4 is closely related to Y2, but DNA–DNA hybridization experiments between these two strains revealed that they belong to two different species. The two strains displayed different fingerprints after PCR analysis using the repetitive primers BOX, ERIC and REP. Strain 3-2W4 did not degrade microcystin, which is a characteristic trait of Y2. Like Y2, strain 3-2W4 had the following characteristics: fatty acids comprising mainly C , summed feature 3 (C and/or iso-C 2-OH) and C, the presence of ubiquinone Q-10 and -homospermidine as the predominant polyamine compound. The polar lipid profiles of the two strains were almost identical, consisting of phosphatidylethanolamine, phosphatidylmonomethylethanolamine, phosphatidylglycerol and sphingoglycolipid. Strain 3-2W4 and Y2 utilized the -peptides H-hVal-hAla-hLeu-OH and H-hAla-hLeu-OH as sole carbon and energy sources and shared -peptidyl aminopeptidase activity in common, which distinguishes them from and type strains. On the basis of these results, strain 3-2W4 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is 3-2W4 (=DSM 17130=CCUG 52537). The descriptions of the genus and the species are emended.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64509-0
2007-01-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/57/1/107.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64509-0&mimeType=html&fmt=ahah

References

  1. Altenburger P., Kämpfer P., Makristathis A., Lubitz W., Busse H. J. 1996; Classification of bacteria isolated from a medieval wall painting. J Biotechnol 47:39–52 [CrossRef]
    [Google Scholar]
  2. Bourne D. G., Riddles P., Jones G. J., Smith W., Blakeley R. L. 2001; Characterisation of a gene cluster involved in bacterial degradation of the cyanobacterial toxin microcystin LR. Environ Toxicol 16:523–534 [CrossRef]
    [Google Scholar]
  3. Busse H. J., Auling G. 1988; Polyamine pattern as a chemotaxonomic marker within the Proteobacteria . Syst Appl Microbiol 11:1–8 [CrossRef]
    [Google Scholar]
  4. Busse H. J., Bunka S., Hensel A., Lubitz W. 1997; Discrimination of members of the family Pasteurellaceae based on polyamine patterns. Int J Syst Bacteriol 47:698–708 [CrossRef]
    [Google Scholar]
  5. Busse H. J., Kämpfer P., Denner E. B. 1999; Chemotaxonomic characterisation of Sphingomonas . J Ind Microbiol Biotechnol 23:242–251 [CrossRef]
    [Google Scholar]
  6. Busse H. J., Denner E. B., Buczolits S., Salkinoja-Salonen M., Bennasar A., Kämpfer P. 2003; Sphingomonas aurantiaca sp. nov., Sphingomonas aerolata sp. nov. and Sphingomonas faeni sp. nov. air- and dustborne and Antarctic, orange-pigmented, psychrotolerant bacteria, and emended description of the genus Sphingomonas . Int J Syst Evol Microbiol 53:1253–1260 [CrossRef]
    [Google Scholar]
  7. Busse H. J., Hauser E., Kämpfer P. 2005; Description of two novel species, Sphingomonas abaci sp.nov. and Sphingomonas panni sp. nov.. Int J Syst Evol Microbiol 55:2565–2569 [CrossRef]
    [Google Scholar]
  8. Cerny G. 1976; Method for distinction of the gram-negative from gram-positive bacteria. Eur J App Microbiol 3:223–225 [CrossRef]
    [Google Scholar]
  9. Chenna R., Sugawara H., Koike T., Lopez R., Gibson T. J., Higgins D. G., Thompson J. D. 2003; Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Res 31:3497–3500 [CrossRef]
    [Google Scholar]
  10. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142 [CrossRef]
    [Google Scholar]
  11. Denner E. B. M., Paukner S., Kämpfer P., Moore E. R. B., Abraham W. R., Busse H.-J., Wanner G., Lubitz W. 2001; Sphingomonas pituitosa sp. nov., an exopolysaccharide-producing bacterium that secretes an unusual type of sphingan. Int J Syst Evol Microbiol 51:827–841 [CrossRef]
    [Google Scholar]
  12. Frackenpohl J., Arvidsson P. I., Schreiber J. V., Seebach D. 2001; The outstanding biological stability of β - and γ -peptides toward proteolytic enzymes: an in vitro investigation with fifteen peptidases. Chembiochem 2:445–455 [CrossRef]
    [Google Scholar]
  13. Gerhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips G. B. (editors) 1981 Manual of Methods for General Bacteriology Washington, DC: American Society for Microbiology;
    [Google Scholar]
  14. Geueke B., Namoto K., Seebach D., Kohler H.-P. E. 2005; A novel β -peptidyl aminopeptidase (BapA) from strain 3-2W4 cleaves peptide bonds of synthetic β -tri- and β -dipeptides. J Bacteriol 187:5910–5917 [CrossRef]
    [Google Scholar]
  15. Geueke B., Heck T., Limbach M., Nesatyy V., Seebach D., Kohler H.-P. E. 2006; Bacterial β -peptidyl aminopeptidases with unique substrate specificities for β - and mixed β , α -oligopeptides. FEBS J 273:5261–5272 [CrossRef]
    [Google Scholar]
  16. Gregersen T. 1978; Rapid method for distinction of gram-negative from gram-positive bacteria. Eur J Appl Microbiol Biotechnol 5:123–127 [CrossRef]
    [Google Scholar]
  17. Huß V. A. R., Festl H., Schleifer K. H. 1983; Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4:184–192 [CrossRef]
    [Google Scholar]
  18. Kämpfer P., Steiof M., Dott W. 1991; Microbiological characterization of a fuel-oil contaminated site including numerical identification of heterotrophic water and soil bacteria. Microb Ecol 21:227–251 [CrossRef]
    [Google Scholar]
  19. Kämpfer P., Neef A., Salkinoja-Salonen M. S., Busse H.-J. 2002a; Chelatobacter heintzii (Auling et al . 1993) is a later subjective synonym of Aminobacter aminovorans (Urakami et al . 1992). Int J Syst Evol Microbiol 52:835–839 [CrossRef]
    [Google Scholar]
  20. Kämpfer P., Witzenberger R., Denner E. B., Busse H.-J., Neef A. 2002b; Sphingopyxis witflariensis sp. nov., isolated from activated sludge. Int J Syst Evol Microbiol 52:2029–2034 [CrossRef]
    [Google Scholar]
  21. Kämpfer P., Witzenberger R., Denner E. B., Busse H.-J., Neef A. 2002c; Novosphingobium hassiacum sp. nov., a new species isolated from an aerated sewage pond. Syst Appl Microbiol 25:37–45 [CrossRef]
    [Google Scholar]
  22. Kritzer J. A., Lear J. D., Hodsdon M. E., Schepartz A. 2004; Helical β -peptide inhibitors of the p53-hDM2 interaction. J Am Chem Soc 126:9468–9469 [CrossRef]
    [Google Scholar]
  23. Lelais G., Seebach D. 2003; Synthesis, CD spectra, and enzymatic stability of β 2-oligoazapeptides prepared from ( S )-2-hydrazino carboxylic acids carrying the side chains of Val, Ala, and Leu. Helv Chim Acta 86:4152–4168 [CrossRef]
    [Google Scholar]
  24. Liu Z. P., Wang B. J., Liu Y. H., Liu S. J. 2005; Novosphingobium taihuense sp. nov., a novel aromatic-compound-degrading bacterium isolated from Taihu Lake, China. Int J Syst Evol Microbiol 55:1229–1232 [CrossRef]
    [Google Scholar]
  25. Louws F. J., Fulbright D. W., Stephens C. T., de Bruijn F. J. 1994; Specific genomic fingerprints of phytopathogenic Xanthomonas and Pseudomonas pathovars and strains generated with repetitive sequences and PCR. Appl Environ Microbiol 60:2286–2295
    [Google Scholar]
  26. Maruyama T., Park H. D., Ozawa K., Tanaka Y., Sumino T., Hamana K., Hiraishi A., Kato K. 2006; Sphingosinicella microcystinivorans gen. nov., sp. nov., a microcystin-degrading bacterium. Int J Syst Evol Microbiol 56:85–89 [CrossRef]
    [Google Scholar]
  27. Pal R., Bala S., Dadhwal M., Kumar M., Dhingra G., Prakash O., Prabagaran S. R., Shivaji S., Cullum J. other authors 2005; Hexachlorocyclohexane-degrading bacterial strains Sphingomonas paucimobilis B90A, UT26 and Sp+, having similar lin genes, represent three distinct species, Sphingobium indicum sp.nov., Sphingobium japonicum sp. nov. and Sphingobium francense sp. nov., and reclassification of [Sphingomonas ] chungbukensis as Sphingobium chungbukense comb. nov. Int J Syst Evol Microbiol 55:1965–1972 [CrossRef]
    [Google Scholar]
  28. Park H. D., Sasaki Y., Maruyama T., Yanagisawa E., Hiraishi A., Kato K. 2001; Degradation of the cyanobacterial hepatotoxin microcystin by a new bacterium isolated from a hypertrophic lake. Environ Toxicol 16:337–343 [CrossRef]
    [Google Scholar]
  29. Saito T., Okano K., Park H. D., Itayama T., Inamori Y., Neilan B. A., Burns B. P., Sugiura N. 2003; Detection and sequencing of the microcystin LR-degrading gene, mlrA , from new bacteria isolated from Japanese lakes. FEMS Microbiol Lett 229:271–276 [CrossRef]
    [Google Scholar]
  30. Schreiber J. V., Frackenpohl J., Moser F., Fleischmann T., Kohler H.-P. E., Seebach D. 2002; On the biodegradation of β -peptides. Chembiochem 3:424–432 [CrossRef]
    [Google Scholar]
  31. Seebach D., Overhand M., Kühnle F. N. M., Martinoni B., Oberer L., Hommel U., Widmer H. 1996; β -Peptides: synthesis by Arndt-Eistert homologation with concomitant peptide coupling. Structure determination by NMR and CD spectroscopy and by X-ray crystallography. Helical secondary structure of a β -hexapeptide in solution and its stability towards pepsin. Helv Chim Acta 79:913–941
    [Google Scholar]
  32. Seebach D., Abele S., Schreiber J. V., Martinoni B., Nussbaum A. K., Schild H., Schulz H., Hennecke H., Woessner R., Bitsch F. 1998; Biological and pharmacokinetic studies with β -peptides. Chimia 52:734–739
    [Google Scholar]
  33. Seebach D., Beck A. K., Bierbaum D. J. 2004; The world of β - and γ -peptides comprised of homologated proteinogenic amino acids and other components. Chem Biodivers 1:1111–1239 [CrossRef]
    [Google Scholar]
  34. Stephens O. M., Kim S., Welch B. D., Hodsdon M. E., Kay M. S., Schepartz A. 2005; Inhibiting HIV fusion with a β -peptide foldamer. J Am Chem Soc 127:13126–13127 [CrossRef]
    [Google Scholar]
  35. Takeuchi M., Hamana K., Hiraishi A. 2001; Proposal of the genus Sphingomonas sensu stricto and three new genera,Sphingobium , Novosphingobium and Sphingopyxis , on the basis of phylogenetic and chemotaxonomic analyses. Int J Syst Evol Microbiol 51:1405–1417
    [Google Scholar]
  36. Teorell T., Stenhagen E. 1938; Ein Universalpuffer für den pH-Bereich 2,0 bis 12,0. Biochem Z 299:416–419 (in German
    [Google Scholar]
  37. Tiirola M. A., Busse H.-J., Kämpfer P., Mannisto M. K. 2005; Novosphingobium lentum sp. nov., a psychrotolerant bacterium from a polychlorophenol bioremediation process. Int J Syst Evol Microbiol 55:583–588 [CrossRef]
    [Google Scholar]
  38. Tindall B. J. 1990; A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 13:128–130 [CrossRef]
    [Google Scholar]
  39. Zhang Y. Q., Chen Y. G., Li W. J., Tian X. P., Xu L. H., Jiang C. L. 2005; Sphingomonas yunnanensis sp. nov., a novel gram-negative bacterium from a contaminated plate. Int J Syst Evol Microbiol 55:2361–2364 [CrossRef]
    [Google Scholar]
  40. Ziemke F., Höfle M. G., Lalucat J., Rosselló-Mora R. 1998; Reclassification of Shewanella putrefaciens Owen's genomic group II as Shewanella baltica sp. nov. Int J Syst Bacteriol 48:179–186 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64509-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64509-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error