1887

Abstract

A pink-pigmented, facultatively methylotrophic bacterium, strain CBMB20, isolated from stem tissues of rice, was analysed by a polyphasic approach. Strain CBMB20 utilized 1-aminocyclopropane 1-carboxylate (ACC) as a nitrogen source and produced ACC deaminase. It was related phylogenetically to members of the genus . 16S rRNA gene sequence analysis indicated that strain CBMB20 was most closely related to , and ; however, DNA–DNA hybridization values were less than 70 % with the type strains of these species. The DNA G+C content of strain CBMB20 was 70.6 mol%. The study presents a detailed phenotypic characterization of strain CBMB20 that allows its differentiation from other species. In addition, strain CBMB20 is the only known member of the genus to be described from the phyllosphere of rice. Based on the data presented, strain CBMB20 represents a novel species in the genus , for which the name sp. nov. is proposed, with strain CBMB20 (=DSM 18207=LMG 23582=KACC 11585) as the type strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64603-0
2007-02-01
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/57/2/326.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64603-0&mimeType=html&fmt=ahah

References

  1. Anesti V., Vohra J., Goonetilleka S., McDonald I. R., Sträubler B., Stackebrandt E., Kelly D. P., Wood A. P. 2004; Molecular detection and isolation of facultatively methylotrophic bacteria, including Methylobacterium podarium sp. nov., from the human foot microflora. Environ Microbiol 6:820–830 [CrossRef]
    [Google Scholar]
  2. Austin B., Goodfellow M. 1979; Pseudomonas mesophilica , a new species of pink bacteria isolated from leaf surfaces. Int J Syst Bacteriol 29:373–378 [CrossRef]
    [Google Scholar]
  3. Basile D. V., Basile M. R., Li Q. Y., Corpe W. A. 1985; Vitamin B12-stimulated growth and development of Jungermannia leiantha Grolle and Gymnocolea inflata (Huds.) Dum (Hepaticae. Bryologist 88:77–81 [CrossRef]
    [Google Scholar]
  4. Belimov A. A., Safronova V. I., Sergeyeva T. A., Egorova T. N., Matveyeva V. A., Tsyganov V. E., Borisov A. Y., Tikhonovich I. A., Kluge C. other authors 2001; Characterization of plant growth promoting rhizobacteria isolated from polluted soils and containing 1-aminocyclopropane-1-carboxylate deaminase. Can J Microbiol 47:642–652 [CrossRef]
    [Google Scholar]
  5. Bousfield I. J., Green P. N. 1985; Reclassification of bacteria of the genus Protomonas Urakami and Komagata 1984 in the genus Methylobacterium (Patt, Cole, and Hanson) emend. Green and Bousfield 1983 Int J Syst Bacteriol 35:209 [CrossRef]
    [Google Scholar]
  6. Bozzola J. J., Russell L. D. 1998 Electron Microscopy , 2nd edn. Sudbury, MA: Jones and Bartlett;
    [Google Scholar]
  7. Brosius J., Palmer M. L., Kennedy P. J., Noller H. F. 1978; Complete nucleotide sequence of the 16S ribosomal RNA gene from Escherichia coli . Proc Natl Acad Sci U S A 75:4801–4805 [CrossRef]
    [Google Scholar]
  8. Corpe W. A., Rheem S. 1989; Ecology of the methylotrophic bacteria on living leaf surfaces. FEMS Microbiol Ecol 62:243–250 [CrossRef]
    [Google Scholar]
  9. Doronina N. V., Trotsenko Y. A., Tourova T. P., Kuznetsov B. B., Leisinger T. 2000; Methylopila helvetica sp. nov. and Methylobacterium dichloromethanicum sp. nov. – novel aerobic facultatively methylotrophic bacteria utilizing dichloromethane. Syst Appl Microbiol 23:210–218 [CrossRef]
    [Google Scholar]
  10. Doronina N. V., Trotsenko Y. A., Kuznetsov B. B., Tourova T. P., Salkinoja-Salonen M. S. 2002; Methylobacterium suomiense sp. nov. and Methylobacterium lusitanum sp. nov., aerobic, pink-pigmented, facultatively methylotrophic bacteria. Int J Syst Evol Microbiol 52:773–776 [CrossRef]
    [Google Scholar]
  11. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [CrossRef]
    [Google Scholar]
  12. Gallego V., Garcia M. T., Ventosa A. 2005a; Methylobacterium hispanicum sp. nov. and Methylobacterium aquaticum sp. nov., isolated from drinking water. Int J Syst Evol Microbiol 55:281–287 [CrossRef]
    [Google Scholar]
  13. Gallego V., Garcia M. T., Ventosa A. 2005b; Methylobacterium variabile sp. nov., a methylotrophic bacterium isolated from an aquatic environment. Int J Syst Evol Microbiol 55:1429–1433 [CrossRef]
    [Google Scholar]
  14. Gallego V., Garcia M. T., Ventosa A. 2005c; Methylobacterium isbiliense sp. nov., isolated from the drinking water system of Sevilla, Spain. Int J Syst Evol Microbiol 55:2333–2337 [CrossRef]
    [Google Scholar]
  15. Gallego V., Garcia M. T., Ventosa A. 2006; Methylobacterium adhaesivum sp. nov., a methylotrophic bacterium isolated from drinking water. Int J Syst Evol Microbiol 56:339–342 [CrossRef]
    [Google Scholar]
  16. Gerhardt P. R., Murray R. G. E., Wood W. A., Krieg N. R. (editors) 1994 Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology;
    [Google Scholar]
  17. Green P. N. 1992; The genus Methylobacterium . In The Prokaryotes . , 2nd edn. pp  2342–2349 Edited by Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K. H. New York: Springer;
  18. Green P. N., Bousfield I. J. 1982; A taxonomic study of some Gram-negative facultatively methylotrophic bacteria. J Gen Microbiol 128:623–638
    [Google Scholar]
  19. Green P. N., Bousfield I. J. 1983; Emendation of Methylobacterium Patt, Cole, and Hanson 1976; Methylobacterium rhodinum . (Heumann 1962) comb. nov. corrig.; Methylobacterium radiotolerans (Ito and Iizuka 1971) comb. nov. corrig.; and Methylobacterium mesophilicum (Austin and Goodfellow 1979) comb. nov. Int J Syst Bacteriol 33:875–877 [CrossRef]
    [Google Scholar]
  20. Green P. N., Bousfield I. J., Hood D. 1988; Three new Methylobacterium species: M. rhodesianum sp. nov., M. zatmanii sp. nov., and M. fujisawaense sp. nov.. Int J Syst Bacteriol 38:124–127 [CrossRef]
    [Google Scholar]
  21. Heumann W. 1962; Die Methodik der Kreuzung sternbildender Bakterien. Biol Zentralbl 81:341–354 (in German)
    [Google Scholar]
  22. Holland M. A., Polacco J. C. 1992; Urease-null and hydrogenase-null phenotypes of a phylloplane bacterium reveal altered nickel metabolism in two soybean mutants. Plant Physiol 98:942–948 [CrossRef]
    [Google Scholar]
  23. Holland M. A., Polacco J. C. 1994; PPFMs and other covert contaminants: is there more to plant physiology than just plant?. Annu Rev Plant Physiol Plant Mol Biol 45:197–209 [CrossRef]
    [Google Scholar]
  24. Idris R., Kuffner M., Bodrossy L., Puschenreiter M., Monchy S., Wenzel W. W., Sessitsch A. 2006; Characterization of Ni-tolerant methylobacteria associated with the hyperaccumulating plant Thlaspi goesingense and description of Methylobacterium goesingense sp. nov. Syst Appl Microbiol 29:634–644 [CrossRef]
    [Google Scholar]
  25. Ito H., Iizuka H. 1971; Taxonomic studies on a radio-resistant Pseudomonas . XII. Studies on the microorganisms of cereal grain. Agric Biol Chem 35:1566–1571 [CrossRef]
    [Google Scholar]
  26. Jourand P., Giraud E., Bena G., Sy A., Willems A., Gillis M., Dreyfus B., de Lajudie P. 2004; Methylobacterium nodulans sp. nov., for a group of aerobic, facultatively methylotrophic, legume root-nodule-forming and nitrogen-fixing bacteria. Int J Syst Evol Microbiol 54:2269–2273 [CrossRef]
    [Google Scholar]
  27. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [CrossRef]
    [Google Scholar]
  28. Koenig R. L., Morris R. O., Polacco J. C. 2002; tRNA is the source of low-level trans -zeatin production in Methylobacterium spp. J Bacteriol 184:1832–1842 [CrossRef]
    [Google Scholar]
  29. Kouno K., Ozaki A. 1975; Distribution of methanol-utilizing bacteria. In Proceedings of the International Symposium on Microbial Growth on C1 Compounds pp  11–21 Osaka, Japan: Society of Fermentation Technology;
    [Google Scholar]
  30. Kumar S., Tamura K., Nei M. 2004; mega3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163 [CrossRef]
    [Google Scholar]
  31. Lidstrom M. E., Chistoserdova L. 2002; Plants in the pink: cytokinin production by Methylobacterium . J Bacteriol 184:1818 [CrossRef]
    [Google Scholar]
  32. Madhaiyan M., Poonguzhali S., Ryu J. H., Sa T. M. 2006; Regulation of ethylene levels in canola ( Brassica campestris ) by 1-aminocyclopropane-1-carboxylate deaminase-containing Methylobacterium fujisawaense . Planta 224:268–278 [CrossRef]
    [Google Scholar]
  33. McDonald I. R., Murrell J. C. 1997; The methanol dehydrogenase structural gene mxaF and its use as a functional gene probe for methanotrophs and methylotrophs. Appl Environ Microbiol 63:3218–3224
    [Google Scholar]
  34. McDonald I. R., Doronina N. V., Trotsenko Y. A., McAnulla C., Murrell J. C. 2001; Hyphomicrobium chloromethanicum sp. nov. and Methylobacterium chloromethanicum sp. nov., chloromethane-utilizing bacteria isolated from a polluted environment. Int J Syst Evol Microbiol 51:119–122
    [Google Scholar]
  35. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [CrossRef]
    [Google Scholar]
  36. Patt T. E., Cole G. C., Hanson R. S. 1976; Methylobacterium , a new genus of facultatively methylotrophic bacteria. Int J Syst Bacteriol 26:226–229 [CrossRef]
    [Google Scholar]
  37. Penrose D. M., Glick B. R. 2001; Levels of ACC and related compounds in exudate and extracts of canola seeds treated with ACC deaminase-containing plant growth-promoting bacteria. Can J Microbiol 47:368–372 [CrossRef]
    [Google Scholar]
  38. Pirttilä A. M., Laukkanen H., Pospiech H., Myllylä R., Hohtola A. 2000; Detection of intracellular bacteria in the buds of Scotch pine ( Pinus sylvestris L.) by in situ hybridization. Appl Environ Microbiol 66:3073–3077 [CrossRef]
    [Google Scholar]
  39. Rock J. S., Goldberg I., Ben-Bassat A., Mateles R. I. 1976; Isolation and characterization of two methanol-utilizing bacteria. Agric Biol Chem 40:2129–2135 [CrossRef]
    [Google Scholar]
  40. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  41. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  42. Sasser M. 1990; Identification of bacteria through fatty acid analysis. In Methods in Phytobacteriology pp  199–204 Edited by Klement S., Rudolf K., Sands D. Budapest: Akademiai Kiado;
    [Google Scholar]
  43. Seldin L., Dubnau D. 1985; Deoxyribonucleic acid homology among Bacillus polymyxa , Bacillus macerans , Bacillus azotofixans , and other nitrogen-fixing Bacillus strains. Int J Syst Bacteriol 35:151–154 [CrossRef]
    [Google Scholar]
  44. Shima S., Yanagi M., Saiki H. 1994; The phylogenetic position of Hydrogenobacter acidophilus based on 16S rRNA sequence analysis. FEMS Microbiol Lett 119:119–122 [CrossRef]
    [Google Scholar]
  45. Stearns J. C., Shah S., Greenberg B. M., Dixon D. G., Glick B. R. 2005; Tolerance of transgenic canola expressing 1-aminocyclopropane-1-carboxylic acid deaminase to growth inhibition by nickel. Plant Physiol Biochem 43:701–708 [CrossRef]
    [Google Scholar]
  46. Sy A., Giraud E., Jourand P., Garcia N., Willems A., de Lajudie P., Prin Y., Neyra M., Gillis M. other authors 2001; Methylotrophic Methylobacterium bacteria nodulate and fix nitrogen in symbiosis with legumes. J Bacteriol 183:214–220 [CrossRef]
    [Google Scholar]
  47. Sy A., Timmers A. C. J., Knief C., Vorholt J. A. 2005; Methylotrophic metabolism is advantageous for Methylobacterium extorquens during colonization of Medicago truncatula under competitive conditions. Appl Environ Microbiol 71:7245–7252 [CrossRef]
    [Google Scholar]
  48. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  49. Trotsenko Yu. A., Ivanova E. G., Doronina N. V. 2001; Aerobic methylotrophic bacteria as phytosymbionts. Mikrobiologiia 70:725–736 (in Russian)
    [Google Scholar]
  50. Urakami T., Komagata K. 1984; Protomonas , a new genus of facultatively methylotrophic bacteria. Int J Syst Bacteriol 34:188–201 [CrossRef]
    [Google Scholar]
  51. Urakami T., Araki H., Suzuki K., Komagata K. 1993; Further studies of the genus Methylobacterium and description of Methylobacterium aminovorans sp. nov. Int J Syst Bacteriol 43:504–513 [CrossRef]
    [Google Scholar]
  52. Van Aken B., Peres C. M., Lafferty-Doty S., Yoon J. M., Schnoor J. L. 2004; Methylobacterium populi sp. nov., a novel aerobic, pink-pigmented, facultatively methylotrophic, methane-utilizing bacterium isolated from poplar trees ( Populus deltoides × nigra DN34). Int J Syst Evol Microbiol 54:1191–1196 [CrossRef]
    [Google Scholar]
  53. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
  54. Weisberg W. G., Barns S. M., Pelletier B. A., Lane D. J. 1991; 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703
    [Google Scholar]
  55. Whittenbury R., Phillips K. C., Wilkinson J. F. 1970; Enrichment, isolation and some properties of methane-utilizing bacteria. J Gen Microbiol 61:205–218 [CrossRef]
    [Google Scholar]
  56. Wood A. P., Kelly D. P., McDonald I. R., Jordan S. L., Morgan T. D., Khan S., Murrell J. C., Borodina E. 1998; A novel pink pigmented facultative methylotroph, Methylobacterium thiocyanatum sp. nov., capable of growth on thiocyanate or cyanate as sole nitrogen sources. Arch Microbiol 169:148–158 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64603-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64603-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF

Supplementary material 3

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error