1887

Abstract

A Gram-positive, slightly halophilic, rod-shaped bacterium, designated CL-DD14, was isolated from seawater of the East Sea, Korea. Phylogenetic analyses based on 16S rRNA gene sequences indicated that strain CL-DD14 belongs to the genus . Levels of 16S rRNA gene sequence similarity between strain CL-DD14 and the type strains of recognized species of the genus were low (94.1–97.1 %). Strain CL-DD14 grew over the pH range 6–9 and temperature range 10–40 °C. The strain grew at NaCl concentrations of 0.5–8 % (w/v) with optimum growth at 1–3 % and no growth was observed after 3 weeks on nutrient agar without any salts. It contained -diaminopimelic acid as the diamino acid in the cell wall. The major isoprenoid quinone was MK-8(H) and the major cellular fatty acids were iso-C and 10-methyl C. The DNA G+C content was 72.9 mol%. On the basis of phenotypic and phylogenetic data, strain CL-DD14 is considered to represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is CL-DD14 (=KCCM 42321=DSM 18248).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64649-0
2007-04-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/57/4/775.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64649-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. 1990; Basic local alignment search tool. J Mol Biol 215:403–410 [CrossRef]
    [Google Scholar]
  2. Collins M. D. 1985; Analysis of isoprenoid quinones. Methods Microbiol 18:329–366
    [Google Scholar]
  3. Felsenstein J. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376 [CrossRef]
    [Google Scholar]
  4. Fialho A. M., Martins L. O., Donval M. L., Leitao J. H., Ridout M. J., Jay A. J., Morris V. J., Sá-Correia I. 1999; Structures and properties of gellan polymers produced by Sphingomonas paucimobilis ATCC 31461 from lactose compared with those produced from glucose and from cheese whey. Appl Environ Microbiol 65:2485–2491
    [Google Scholar]
  5. Fitch W. M. 1971; Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416 [CrossRef]
    [Google Scholar]
  6. Hansen G. H., Sørheim R. 1991; Improved method for phenotypical characterization of marine bacteria. J Microbiol Methods 13:231–241 [CrossRef]
    [Google Scholar]
  7. Jeon Y. S., Chung H., Park S., Hur I., Lee J. H., Chun J. 2005; jphydit: a JAVA-based integrated environment for molecular phylogeny of ribosomal RNA sequences. Bioinformatics 21:3171–3173 [CrossRef]
    [Google Scholar]
  8. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism pp  21–132 Edited by Munro H. N. New York: Academic Press;
    [Google Scholar]
  9. Kumar S., Tamura K., Nei M. 2004; mega 3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163 [CrossRef]
    [Google Scholar]
  10. Lane D. J. 1991; 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics pp  115–175 Edited by Stackebrandt E., Goodfellow M. Chichester: Wiley;
    [Google Scholar]
  11. Lawson P. A., Collins M. D., Schumann P., Tindall B. J., Hirsch P., Labrenz M. 2000; New ll-diaminopimelic acid-containing actinomycetes from hypersaline, heliothermal and meromictic Antarctic Ekho Lake: Nocardioides aquaticus sp.nov. and Friedmanniella lacustris sp. nov.. Syst Appl Microbiol 23:219–229 [CrossRef]
    [Google Scholar]
  12. Lee S. D. 2007; Nocardioides furvisabuli sp. nov., isolated from black sand. Int J Syst Evol Microbiol 57:35–39 [CrossRef]
    [Google Scholar]
  13. Lyman J., Fleming R. H. 1940; Composition of sea water. J Mar Res 3:134–146
    [Google Scholar]
  14. Minnikin D. E., O'Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal K., Parlett J. H. 1984; An integrated procedure for the extraction of bacterial isoprenoid quinines and polar lipids. J Microbiol Methods 2:233–241 [CrossRef]
    [Google Scholar]
  15. Posada D., Crandall K. A. 1998; modeltest: testing the model of DNA substitution. Bioinformatics 14:817–818 [CrossRef]
    [Google Scholar]
  16. Prauser H. 1976; Nocardioides , a new genus of the order Actinomycetales . Int J Syst Bacteriol 26:58–65 [CrossRef]
    [Google Scholar]
  17. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  18. Smibert R. M., Krieg N. R. 1994; Phenotypic characterization. In Methods for General and Molecular Bacteriology pp  607–654 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  19. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849 [CrossRef]
    [Google Scholar]
  20. Staneck J. L., Roberts G. D. 1974; Simplified approach to the identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 28:226–231
    [Google Scholar]
  21. Swofford D. L. 1998 paup*: Phylogenetic analysis using parsimony, version 4 Sunderland, MA: Sinauer Associates;
    [Google Scholar]
  22. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128 [CrossRef]
    [Google Scholar]
  23. Yi H., Chun J. 2004a; Nocardioides ganghwensis sp. nov., isolated from tidal flat sediment. Int J Syst Evol Microbiol 54:1295–1299 [CrossRef]
    [Google Scholar]
  24. Yi H., Chun J. 2004b; Nocardioides aestuarii sp. nov., isolated from tidal flat sediment. Int J Syst Evol Microbiol 54:2151–2154 [CrossRef]
    [Google Scholar]
  25. Yoon J.-H., Rhee S.-K., Lee J.-S., Park Y.-H., Lee S. T. 1997; Nocardioides pyridinolyticus sp. nov., a pyridine-degrading bacterium isolated from the oxic zone of an oil shale column. Int J Syst Bacteriol 47:933–938 [CrossRef]
    [Google Scholar]
  26. Yoon J.-H., Kim I.-G., Kang K. H., Oh T.-K., Park Y.-H. 2004; Nocardioides aquiterrae sp. nov., isolated from groundwater in Korea. Int J Syst Evol Microbiol 54:71–75 [CrossRef]
    [Google Scholar]
  27. Yoon J.-H., Kim I.-G., Lee M.-H., Oh T.-K. 2005; Nocardioides kribbensis sp. nov., isolated from an alkaline soil. Int J Syst Evol Microbiol 55:1611–1614 [CrossRef]
    [Google Scholar]
  28. Yoon J.-H., Lee C.-H., Oh T.-K. 2006a; Nocardioides lentus sp. nov., isolated from an alkaline soil. Int J Syst Evol Microbiol 56:271–275 [CrossRef]
    [Google Scholar]
  29. Yoon J.-H., Lee J.-K., Jung S.-Y., Kim J.-A., Kim H.-K., Oh T.-K. 2006b; Nocardioides kongjuensis sp. nov., an N -acylhomoserine lactone-degrading bacterium. Int J Syst Evol Microbiol 56:1783–1787 [CrossRef]
    [Google Scholar]
  30. Yoon J.-H., Kang S.-J., Lee C.-H., Oh T.-K. 2007; Nocardioides insulae sp. nov., isolated from soil. Int J Syst Evol Microbiol 57:136–140 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64649-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64649-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error