1887

Abstract

A Gram-positive bacterium, designated strain PG-02, was isolated by serial dilution from aerobic granules obtained from a laboratory-scale sequencing batch reactor for bioremediation of phenolic wastewater. Strain PG-02 grew axenically as cocci and is an oxidase-negative and catalase-positive, non-motile facultative anaerobe. It does not reduce nitrate and grows between 15 and 37 °C, with an optimum temperature of 30 °C. The pH range for growth is between 5.0 and 8.5, with an optimum pH of 7.0. Strain PG-02 contains type A3 peptidoglycan (-Apm←Gly with alanine at position 1 of the peptide subunit). The G+C content of the DNA is 69 mol%. Menaquinone MK-9(H) was the major isoprenoid quinone. The polar lipids included diphosphatidylglycerol and phosphatidylglycerol, while 13-methyltetradecanoic acid (i-C) and 1,1-dimethoxy-iso-pentadecane (i-C DMA) were the major components in whole-cell methanolysates. PG-02 stained positively for intracellular polyphosphate granules but not poly--hydroxyalkanoates. It produces capsular material and possesses an autoaggregation capability. Phenotypic and 16S rRNA gene sequence analyses showed that PG-02 differed from its closest phylogenetic relatives, namely members of the suborder , which includes the genera , , , , , , , and , and that it should be placed in a new genus and species as gen. nov., sp. nov. The type strain of is PG-02 (=ATCC BAA-1292=DSM 17626).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64671-0
2007-04-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/57/4/730.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64671-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schaffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3420 [CrossRef]
    [Google Scholar]
  2. Arai H., Akahira S., Ohishi T., Maeda M., Kudo K. 1998; Adaptation of Comamonas testosteroni TA441 to utilize phenol: organization and regulation of the genes involved in phenol degradation. Microbiology 144:2895–2903 [CrossRef]
    [Google Scholar]
  3. Bossier P., Verstraete W. 1996; Triggers for microbial aggregation in activated sludge?. Appl Microbiol Biotechnol 45:1–6 [CrossRef]
    [Google Scholar]
  4. Buck J. D. 1982; Nonstaining (KOH) method for determination of Gram reactions of marine bacteria. Appl Environ Microbiol 44:992–993
    [Google Scholar]
  5. Charfreitag O., Collins M. D., Stackebrandt E. 1988; Reclassification of Arachnia propionica as Propionibacterium propionicus comb. nov. Int J Syst Bacteriol 38:354–357 [CrossRef]
    [Google Scholar]
  6. Collins M. D., Cockcroft S., Wallbanks S. 1994; Phylogenetic analysis of a new ll-diaminopimelic acid-containing coryneform bacterium from herbage, Nocardioides plantarum sp. nov. Int J Syst Bacteriol 44:523–526 [CrossRef]
    [Google Scholar]
  7. Cote R. J., Gherna R. L. 1994; Nutrition and medium. In Methods for General and Molecular Bacteriology pp  156–178 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Kreig N. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  8. Dapaah S. Y., Hill G. A. 1992; Biodegradation of chlorophenol mixtures by Pseudomonas putida . Biotechnol Bioeng 40:1353–1358 [CrossRef]
    [Google Scholar]
  9. Davì M. L., Gnudi F. 1999; Phenolic compounds in surface water. Water Res 33:3213–3219 [CrossRef]
    [Google Scholar]
  10. Farrell A., Quilty B. 2002; Substrate-dependent autoaggregation of Pseudomonas putida CP1 during the degradation of mono-chlorophenols and phenols. J Ind Microbiol Biotechnol 28:316–324 [CrossRef]
    [Google Scholar]
  11. Felsenstein J. 1985; Confidence limits of phylogenies: an approach using the bootstrap. Evolution 39:783–791 [CrossRef]
    [Google Scholar]
  12. Hall T. 1997 BioEdit. Biological sequence alignment editor for Win 95/98/NT/2K/XP Carlsbad, CA: Ibis Therapeutics;
    [Google Scholar]
  13. Hino H., Watanabe K., Takahashi N. 1998; Phenol hydroxylase cloned from Ralstonia eutropha strain E2 exhibits novel kinetic properties. Microbiology 144:1765–1772 [CrossRef]
    [Google Scholar]
  14. Jantzen E., Hofstad T. 1981; Fatty acids of Fusobacterium species: taxonomic implications. J Gen Microbiol 123:163–171
    [Google Scholar]
  15. Jensen J. 1996; Chlorophenols in the terrestrial environment. Rev Environ Contam Toxicol 146:25–51
    [Google Scholar]
  16. Jeong J. J., Kim J. H., Kim C.-K., Hwang I., Lee K. 2003; 3- and 4-alkylphenol degradation pathway in Pseudomonas sp. strain KL28: genetic organization of the lap gene cluster and substrate specificities of phenol hydroxylase and catechol 2,3-dioxygenase. Microbiology 149:3265–3277 [CrossRef]
    [Google Scholar]
  17. Jiang H.-L., Tay J.-H., Maszenan A. M., Tay S. T.-L. 2004; Bacterial diversity and function of aerobic granules engineered in a sequencing batch reactor for phenol degradation. Appl Environ Microbiol 70:6767–6775 [CrossRef]
    [Google Scholar]
  18. Johnston N. C., Goldfine H. 1994; Isolation and characterization of new phosphatidylglycerol acetals of plasmalogens. A family of ether lipids in clostridia. Eur J Biochem 223:957–963 [CrossRef]
    [Google Scholar]
  19. Kämpfer P., Kroppenstedt R. M. 1996; Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 42:989–1005 [CrossRef]
    [Google Scholar]
  20. Kämpfer P., Rainey F. A., Andersson M. A., Nurmiaho Lassila E.-L., Ulrych U., Busse H.-J., Weiss N., Mikkola R., Salkinoja-Salonen M. 2000; Frigoribacterium faeni gen. nov., sp. nov., a novel psychrophilic genus of the family Microbacteriaceae . Int J Syst Evol Microbiol 50:355–363 [CrossRef]
    [Google Scholar]
  21. Kaufman A. E., Goldfine H., Narayan O., Gruner S. M. 1990; Physical studies on the membranes and lipids of plasmalogen-deficient Megasphaera elsdenii . Chem Phys Lipids 55:41–48 [CrossRef]
    [Google Scholar]
  22. MacKenzie S. L. 1987; Gas chromatographic analysis of amino acids as the N -heptafluorobutyryl isobutyl esters. J Assoc Off Anal Chem 70:151–160
    [Google Scholar]
  23. Maidak B. L., Olsen G. J., Larsen N., Overbeek R., McCaughey M. J., Woese C. R. 1997; The RDP (Ribosomal Database Project. Nucleic Acids Res 25:109–111 [CrossRef]
    [Google Scholar]
  24. Männistö M. K., Schumann P., Rainey F. A., Kämpfer P., Tsitko I., Tiirola M. A., Salkinoja-Salonen M. S. 2000 Subtercola boreus gen. nov., sp. nov and Subtercola frigoramans sp. nov., two new psychrophilic actinobacteria isolated from boreal groundwater. Int J Syst Evol Microbiol 50, 1731–1739
  25. Maszenan A. M., Seviour R. J., Patel B. K. C., Rees G. N., McDougall B. M. 1997; Amaricoccus gen nov., a gram-negative coccus occurring in regular packages or tetrads, isolated from activated sludge biomass, and descriptions of Amaricoccus veronensis sp. nov., Amaricoccus tamworthensis sp. nov., Amaricoccus macauensis sp. nov., and Amaricoccus kaplicensis sp. nov.. Int J Syst Bacteriol 47:727–734 [CrossRef]
    [Google Scholar]
  26. Maszenan A. M., Seviour R. J., Patel B. K. C., Schumann P., Rees G. N. 1999a; Tessaracoccus bendigoensis gen. nov., sp. nov. a Gram-positive coccus occurring in regular packages or tetrads, isolated from activated sludge biomass. Int J Syst Bacteriol 49:459–468 [CrossRef]
    [Google Scholar]
  27. Maszenan A. M., Seviour R. J., Patel B. K. C., Schumann P., Burghardt J., Webb R. I., Soddell J. A., Rees G. N. 1999b; Friedmanniella spumicola sp. nov. and Friedmanniella capsulata sp. nov. from activated sludge foam: Gram-positive cocci that grow in aggregates of repeating groups of cocci. Int J Syst Bacteriol 49:1667–1680 [CrossRef]
    [Google Scholar]
  28. MIDI 1999; Sherlock Microbial Identification System. Operating Manual, version 3.0 Newark, DE: MIDI, Inc;
    [Google Scholar]
  29. Nakamura K., Hiraishi A., Yoshimi Y., Kawaharasaki M., Masuda K., Kamagata Y. 1995; Microlunatus phosphovorus gen. nov., sp. nov. a new gram-positive polyphosphate-accumulating bacterium isolated from activated sludge. Int J Syst Bacteriol 45:17–22 [CrossRef]
    [Google Scholar]
  30. Pitcher D. G., Collins M. D. 1991; Phylogenetic analysis of some ll-diaminopimelic acid-containing coryneform bacteria from human skin: description of Propionibacterium innocuum sp. nov. FEMS Microbiol Lett 84:295–300
    [Google Scholar]
  31. Rees G. N., Vasiliadis G., May J. W., Bayly R. C. 1992; Differentiation of polyphosphate and poly- β -hydroxybutyrate granules in an Acinetobacter sp. isolated from activated sludge. FEMS Microbiol Lett 94:171–173
    [Google Scholar]
  32. Rehfuss M., Urban J. 2005; Alcaligenes faecalis subsp. phenolicus subsp. nov. a phenol-degrading, denitrifying bacterium isolated from a graywater bioprocessor. Syst Appl Microbiol 28:421–429 [CrossRef]
    [Google Scholar]
  33. Schumann P., Prauser H., Rainey F. A., Stackebrandt E., Hirsch P. 1997; Friedmanniella antarctica gen. nov., sp. nov. an ll-diaminopimelic acid-containing actinomycete from Antarctic sandstone. Int J Syst Bacteriol 47:278–283 [CrossRef]
    [Google Scholar]
  34. Selvaratnam S., Schoedel B. A., McFarland B. L., Kulpa C. F. 1997; Application of the polymerase chain reaction (PCR) and reverse transcriptase/PCR for determining the fate of phenol-degrading Pseudomonas putida ATCC 11172 in a bioaugmented sequencing batch reactor. Appl Microbiol Biotechnol 47:236–240 [CrossRef]
    [Google Scholar]
  35. Semple K. T., Cain R. B. 1995; Metabolism of phenols by Ochromonas danica . FEMS Microbiol Lett 133:253–257 [CrossRef]
    [Google Scholar]
  36. Shintani T., Liu W. T., Hanada S., Kamagata Y., Miyaoka S., Suzuki T., Nakamura K. 2000; Micropruina glycogenica gen. nov., sp. nov., a new Gram-positive glycogen-accumulating bacterium isolated from activated sludge. Int J Syst Evol Microbiol 50:201–207 [CrossRef]
    [Google Scholar]
  37. Smibert R. M., Krieg N. L. 1994; Phenotypic characterization. In Methods for General and Molecular Bacteriology pp  607–654 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  38. Soda S., Ike M., Fujita M. 1998; Effects of inoculation of a genetically engineered bacterium on performance and indigenous bacteria of a sequencing batch activated sludge process treating phenol. J Ferment Bioeng 86:90–96 [CrossRef]
    [Google Scholar]
  39. Stackebrandt E., Rainey F. A., Ward-Rainey N. L. 1997; Proposal for a new hierarchic classification system, Actinobacteria classis nov. Int J Syst Bacteriol 47:479–491 [CrossRef]
    [Google Scholar]
  40. Tamura T., Yokota A. 1994; Transfer of Nocardioides fastidiosa Collins and Stackebrandt 1989 to the genus Aeromicrobium as Aeromicrobium fastidiosum comb. nov. Int J Syst Bacteriol 44:608–611 [CrossRef]
    [Google Scholar]
  41. Tamura T., Takeuchi M., Yokota A. 1994; Luteococcus japonicus gen. nov., sp. nov., a new gram-positive coccus with ll-diaminopimelic acid in the cell wall. Int J Syst Bacteriol 44348–356 [CrossRef]
    [Google Scholar]
  42. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  43. van Limbergen H., Top E. M., Verstraete W. 1998; Bioaugmentation in activated sludge: current features and future perspectives. Appl Microbiol Biotechnol 50:16–23 [CrossRef]
    [Google Scholar]
  44. van Schie P. M., Young L. Y. 1998; Isolation and characterization of phenol-degrading denitrifying bacteria. Appl Environ Microbiol 64:2432–2438
    [Google Scholar]
  45. Verhulst A., van Hespen H., Symons F., Eyssen H. 1987; Systematic analysis of the long-chain components of Eubacterium lentum . J Gen Microbiol 133:275–282
    [Google Scholar]
  46. Watanabe K., Hino S., Onodera K., Kajie S., Takahashi N. 1996; Diversity in kinetics of bacterial phenoloxygenating activity. J Ferment Bioeng 81:562–565
    [Google Scholar]
  47. Watanabe K., Teramoto M., Futamata H., Harayama S. 1998; Molecular detection, isolation, and physiological characterization of functionally dominant phenol-degrading bacteria in activated sludge. Appl Environ Microbiol 64:4396–4402
    [Google Scholar]
  48. Watanabe K., Teramoto M., Harayama S. 1999; An outbreak of nonflocculating catabolic populations caused the breakdown of a phenol-digesting activated-sludge process. Appl Environ Microbiol 65:2813–2819
    [Google Scholar]
  49. Whiteley A. S., Bailey M. J. 2000; Bacterial community structure and physiological state within an industrial phenol bioremediation system. Appl Environ Microbiol 66:2400–2407 [CrossRef]
    [Google Scholar]
  50. Winker S., Woese C. R. 1991; A definition of the domain Archaea , Bacteria and Eucarya in terms of small ribosomal RNA characteristics. Syst Appl Microbiol 14:305–310 [CrossRef]
    [Google Scholar]
  51. Yokota A., Tamura T., Takeuchi M., Weiss N., Stackebrandt E. 1994; Transfer of Propionibacterium innocuum Pitcher and Collins 1991 to Propioniferax gen. nov. as Propioniferax innocua comb. nov. Int J Syst Bacteriol 44:579–582 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64671-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64671-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error