1887

Abstract

A novel isolate, CP153-2, was obtained from topsoil biological crusts in the Colorado Plateau (USA). Colonies were black in colour due to melanin-like pigments when grown on oligotrophic medium, but not when grown on copiotrophic medium. Induction of melanogenesis was independent of growth phase or illumination conditions, including exposure to UVB and UVA radiation, but exposure to UVB could enhance total pigment production and growth under low nitrogen prevented its synthesis. This mode of regulation was previously unknown among melanin-producing bacteria. Polyphasic characterization of the strain revealed that cells were short, straight to curved or irregular rods that developed into pairs and formed multiseptate short filaments, with rare bud-like cells. Short rods were typically motile by means of flagella; multicellular structures tended to be sessile. Cells stained Gram-positive, grew at 4–30 °C and had a narrow range of pH tolerance (pH 5–9). The major fatty acids were iso-C iso-C, anteiso-C and C; MK-9(H) was the major respiratory quinone. Its peptidoglycan contained -diaminopimelic acid. Based on 16S rRNA gene sequence similarity data, its closest relative (98.1 % similarity) was DSM 44406, which is similar morphologically. Based on the above characteristics, strain CP153-2 was also assigned to the genus . However, CP153-2 had a relatedness of only 49.9 % in whole-genome reassociation comparisons with the type strain of and thus formally represents a novel species, for which the name sp. nov. is proposed. Additional evidence in support of a novel species comes from phenotypic and chemotaxonomic characteristics. Strain CP153-2 (=ATCC BAA-1040 =DSM 16678) is the type strain of .

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.64932-0
2007-09-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/57/9/2014.html?itemId=/content/journal/ijsem/10.1099/ijs.0.64932-0&mimeType=html&fmt=ahah

References

  1. Bates S. T., Reddy G. S. N., Garcia-Pichel F. 2006; Exophiala crusticola anam. nov. (affinity Herpotrichiellaceae), a novel black yeast from biological soil crusts in the Western United States. Int J Syst Evol Microbiol 56:2697–2702 [CrossRef]
    [Google Scholar]
  2. Belnap J. 2002; Impacts of off-road vehicles on nitrogen cycles in biological soil crusts: resistance in different US deserts. J Arid Environ 52:155–165 [CrossRef]
    [Google Scholar]
  3. Belnap J., Gardner J. S. 1993; Soil microstructure in soils of the Colorado Plateau: the role of the cyanobacterium Microcoleus vaginatus . Great Basin Nat 53:40–47
    [Google Scholar]
  4. Belnap J., Lange O. L. 2001 Biological Soil Crusts: Structure, Function, and Management (Ecological Studies vol 150 Berlin: Springer-Verlag;
    [Google Scholar]
  5. Collins M. D., Pirouz T., Goodfellow M., Minnikin D. E. 1977; Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 100:221–230 [CrossRef]
    [Google Scholar]
  6. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142 [CrossRef]
    [Google Scholar]
  7. Garcia-Pichel F. 1998; Solar ultraviolet and the evolutionary history of cyanobacteria. Orig Life Evol Biosph 28:321–347 [CrossRef]
    [Google Scholar]
  8. Garcia-Pichel F. 2002; Desert environments: biological soil crusts. In Encyclopedia of Environmental Microbiology pp 1019–1023 Edited by Bitton G. New York: Wiley;
    [Google Scholar]
  9. Garcia-Pichel F., Wingard C. E., Castenholz R. W. 1993; Evidence regarding the UV sunscreen role of a mycosporine-like compound in the cyanobacterium Gloeocapsa sp. Appl Environ Microbiol 59:170–176
    [Google Scholar]
  10. Garcia-Pichel F., Lopez-Cortez A., Nubel U. 2001; Phylogenetic and morphological diversity of cyanobacteria in soil desert crusts from the Colorado Plateau. Appl Environ Microbiol 67:1902–1910 [CrossRef]
    [Google Scholar]
  11. Hugo C., Bruun B., Jooste P. 2006; The genera Bergeyella and Weeksella . In The Prokaryotes: a Handbook on the Biology of Bacteria . , 3rd edn. vol 7 pp 532–538 Edited by Dworkin M., Falkow S., Rosenberg E., Schleifer K. H., Stackebrandt E. New York: Springer;
  12. Johnson S. L., Charles R., Budinoff C. R., Belnap J., Garcia-Pichel F. 2005; Relevance of ammonium oxidation within biological soil crust communities. Environ Microbiol 7:1–12 [CrossRef]
    [Google Scholar]
  13. Kämpfer P. 2006; The family Streptomycetaceae . Part I. Taxonomy. In The Prokaryotes: a Handbook on the Biology of Bacteria . , 3rd edn. vol 3 pp 538–604 Edited by Dworkin M., Falkow S., Rosenberg E., Schleifer K. H., Stackebrandt E. New York: Springer;
  14. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [CrossRef]
    [Google Scholar]
  15. Kollias N. 1995; The spectroscopy of human melanin pigmentation. In Melanin: its Role in Human Photoprotection pp 31–38 Overland Park, KS: Valdenmar Publishing;
    [Google Scholar]
  16. Komagata K., Suzuki K. 1987; Lipid and cell wall analysis in bacterial systematics. Methods Microbiol 19:161–207
    [Google Scholar]
  17. Kumar S., Tamura K., Nei M. 2004; mega3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163 [CrossRef]
    [Google Scholar]
  18. Luedemann G. M. 1968; Geodermatophilus , a new genus of the Dermatophilaceae (Actinomycetales). J Bacteriol 96:1848–1858
    [Google Scholar]
  19. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3:208–218 [CrossRef]
    [Google Scholar]
  20. Mevs U., Stackebrandt E., Schumann P., Gallikowski C. A., Hirsch P. 2000; Modestobacter multiseptatus gen. nov., sp. nov., a budding actinomycete from soils of the Asgard Range (Transantarctic Mountains). Int J Syst Evol Microbiol 50:337–346 [CrossRef]
    [Google Scholar]
  21. Nagy M. L., Pérez A., Garcia-Pichel F. 2005; The prokaryotic diversity of biological soil crusts in the Sonoran desert (Organ Pipe Cactus National Monument, AZ. FEMS Microbiol Ecol 54:233–245 [CrossRef]
    [Google Scholar]
  22. Normand P. 2006; Geodermatophilaceae fam. nov., a formal description. Int J Syst Evol Microbiol 56:2277–2278 [CrossRef]
    [Google Scholar]
  23. Reddy G. S. N., Garcia-Pichel F. 2005; Dyadobacter crusticola sp. nov., from biological soil crusts in the Colorado Plateau, USA, and an emended description of the genus Dyadobacter Chelius and Triplett 2000. Int J Syst Evol Microbiol 55:1295–1299 [CrossRef]
    [Google Scholar]
  24. Reddy G. S. N., Garcia-Pichel F. 2006; The community and phylogenetic diversity of biological soil crusts in the Colorado Plateau studied by molecular fingerprinting and intensive cultivation. Microb Ecol 52:345–357 [CrossRef]
    [Google Scholar]
  25. Reddy G. S. N., Garcia-Pichel F. 2007; Sphingomonas mucosissima sp. nov. and Sphingomonas desiccabilis sp. nov., isolated from biological soil crusts in the Colorado Plateau, USA. Int J Syst Evol Microbiol 57:1028–1034 [CrossRef]
    [Google Scholar]
  26. Reddy G. S. N., Aggarwal R. K., Matsumoto G. I., Shivaji S. 2000; Arthrobacter flavus sp. nov., a psychrophilic bacterium isolate from a pond in McMurdo Dry Valley, Antarctica. Int J Syst Evol Microbiol 50:1553–1561 [CrossRef]
    [Google Scholar]
  27. Reddy G. S. N., Nagy M., Garcia-Pichel F. 2006; Belnapia moabensis gen. nov., sp. nov., an alphaproteobacterium from biological soil crusts in the Colorado Plateau, USA. Int J Syst Evol Microbiol 56:51–58 [CrossRef]
    [Google Scholar]
  28. Rockabrand D., Livers K., Austin T., Kaiser R., Jensen D., Burgess R., Blum P. 1998; Roles of DnaK and RpoS in starvation-induced thermotolerance of Escherichia coli . J Bacteriol 180:846–854
    [Google Scholar]
  29. Smith S. M., Abed R. M. M., Garcia-Pichel F. 2004; Biological soil crusts of sand dunes in Cape Cod National Seashore. Massachusetts, USA: Microb Ecol 48, 200–208 [CrossRef]
  30. Solano F., Sánchez-Amat A. 1999; Studies on the phylogenetic relationships of melanogenic marine bacteria: proposal of Marinomonas mediterranea sp. nov. Int J Syst Bacteriol 49:1241–1246 [CrossRef]
    [Google Scholar]
  31. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849 [CrossRef]
    [Google Scholar]
  32. Suresh K., Reddy G. S. N., Sengupta S., Shivaji S. 2004; Deinococcus indicus sp. nov., an arsenic-resistant bacterium from an aquifer in West Bengal, India. Int J Syst Evol Microbiol 54:457–461 [CrossRef]
    [Google Scholar]
  33. Tamaoka J. 1986; Analysis of bacterial menaquinone mixtures by reverse-phase high-performance liquid chromatography. Methods Enzymol 123:251–256
    [Google Scholar]
  34. Tamaoka J., Katayama-Fujimura Y., Kuraishi H. 1983; Analysis of bacterial menaquinone mixtures by high-performance liquid chromatography. J Appl Bacteriol 54:31–36 [CrossRef]
    [Google Scholar]
  35. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  36. Urzì C., Salamone P., Schumann P., Rohde M., Stackebrandt E. 2004; Blastococcus saxobsidens sp. nov., and emended descriptions of the genus Blastococcus Ahrens and Moll 1970 and Blastococcus aggregatus Ahrens and Moll 1970. Int J Syst Evol Microbiol 54:253–259 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.64932-0
Loading
/content/journal/ijsem/10.1099/ijs.0.64932-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error