1887

Abstract

Two novel red-pigmented strains, MSSRF3 and MSSRF10, with antibacterial activity against phytopathogens were isolated from the rhizosphere region of mangrove-associated wild rice ( Tateoka), in Pichavaram, India. The cells were Gram-negative, facultatively anaerobic and rod-shaped and were motile by means of single polar flagella. The two strains were catalase-positive and oxidase-negative, and were able to grow in 0.1–10 % NaCl (with optimum growth in 2 % NaCl) and at temperatures of 20–42 °C (optimum growth at 25–30 °C). Both strains produced acid and gas from -glucose under anaerobic conditions and utilized a wide range of compounds as sole carbon and energy sources. The DNA G+C contents determined were 51.3 mol% for strain MSSRF3 and 51.0 mol% for strain MSSRF10. Phylogenetic analysis based on 16S rRNA, , and gene sequences showed that strains MSSRF3 and MSSRF10 belong to the genus and are very closely related to JCM 11486, with which they share 98.3–98.5 % (16S rRNA), 98.3–99.7 % (), 90.2–99.8 % () and 91.3–99.4 % () gene sequence similarities, respectively. Levels of DNA–DNA relatedness were 44 % between strains MSSRF3 and MSSRF10, 80 % between strain MSSRF10 and JCM 11486 and 45 % between strain MSSRF3 and JCM 11486. Strain MSSRF3 was phenotypically similar to JCM 11486. However, the inability to reduce nitrate to nitrite, the ability to grow in 0.1 % NaCl and the presence of caseinase were characteristics that allowed differentiation between JCM 11486 and strain MSSRF3. In addition, strain MSSRF3 could be differentiated from strain MSSRF10 and its closest relative JCM 11486 with respect to its genomic fingerprinting analysis (random amplified polymorphic DNA, GTG, BOX, PCR-restriction fragment length polymorphism and ribotyping). Therefore, based on phenotypic, genotypic, phylogenetic and DNA–DNA hybridization analyses, strain MSSRF3 (=LMG 23790=DSM 18581) should be classified as representing the type strain of a novel species of the genus , for which the name sp. nov. is proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.65017-0
2007-10-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/57/10/2241.html?itemId=/content/journal/ijsem/10.1099/ijs.0.65017-0&mimeType=html&fmt=ahah

References

  1. Allen E. G. 1967; Conditions of the colour change of prodigiosin. Nature 216:929–931 [CrossRef]
    [Google Scholar]
  2. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 [CrossRef]
    [Google Scholar]
  3. Baumann P., Furniss A. L., Lee J. V. 1984; Genus I. Vibrio Pacini 1854, 411AL . In Bergey's Manual of Systematic Bacteriology vol 1 pp 518–538 Edited by Krieg N. R., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  4. Behrendt U., Ulrich A., Schumann P., Erler W., Burghardt J., Seyfarth W. 1999; A taxonomic study of bacteria isolated from grasses: a proposed new species Pseudomonas graminis sp. nov. Int J Syst Bacteriol 49:297–308 [CrossRef]
    [Google Scholar]
  5. Ben-Haim Y., Thompson F. L., Thompson C. C., Cnockaert M. C., Hoste B., Swings J., Rosenberg E. 2003; Vibrio coralliilyticus sp. nov., a temperature-dependent pathogen of the coral Pocillopora damicornis . Int J Syst Evol Microbiol 53:309–315 [CrossRef]
    [Google Scholar]
  6. Delorme S., Lemanceau P., Christen R., Corberand T., Meyer J.-M., Gardan L. 2002; Pseudomonas lini sp. nov., a novel species from bulk and rhizospheric soils. Int J Syst Evol Microbiol 52:513–523
    [Google Scholar]
  7. Farmer J. J. III, Hickman-Brenner F. W. 1992; The genera Vibrio and Photobacterium . In The Prokaryotes. A Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications . , 2nd edn. pp 2952–3011 Edited by Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K. H. New York: Springer-Verlag;
  8. Felsenstein J. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376 [CrossRef]
    [Google Scholar]
  9. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [CrossRef]
    [Google Scholar]
  10. Felsenstein J. 1996; Inferring phylogenies from protein sequences by parsimony, distance and likelihood methods. Methods Enzymol 266:418–427
    [Google Scholar]
  11. Fox G. E., Wisotzkey J. D., Jurtshuk P. Jr 1992; How close is close: 16S rRNA sequence identity may not be sufficient to guarantee species identity. Int J Syst Bacteriol 42:166–170 [CrossRef]
    [Google Scholar]
  12. Hjelm M., Riaza A., Formoso F., Melchiorsen J., Gram L. 2004; Seasonal incidence of autochthonous antagonistic Roseobacter spp. and Vibrionaceae strains in a turbot larva ( Scophthalmus maximus ) rearing system. Appl Environ Microbiol 70:7288–7294 [CrossRef]
    [Google Scholar]
  13. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [CrossRef]
    [Google Scholar]
  14. Leifson E. 1963; Determination of carbohydrate metabolism of marine bacteria. J Bacteriol 85:1183–1184
    [Google Scholar]
  15. Loganathan P., Nair S. 2004; Swaminathania salitolerans gen. nov., sp. nov., a salt-tolerant, nitrogen-fixing and phosphate-solubilizing bacterium from wild rice ( Porteresia coarctata Tateoka). Int J Syst Evol Microbiol 54:1185–1190 [CrossRef]
    [Google Scholar]
  16. Loganathan P., Sunitha R., Parida A. K., Nair S. 1999; Isolation and characterization of two genetically distant groups of Acetobacter diazotrophicus from a new host plant Eleusine coracana L. J Appl Microbiol 87:167–172 [CrossRef]
    [Google Scholar]
  17. Long R. A., Azam F. 2001; Antagonistic interactions among marine pelagic bacteria. Appl Environ Microbiol 67:4975–4983 [CrossRef]
    [Google Scholar]
  18. Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5:109–118 [CrossRef]
    [Google Scholar]
  19. Reddy G. S. N., Aggarwal R. K., Matsumoto G. I., Shivaji S. 2000; Arthrobacter flavus sp. nov., a psychrophilic bacterium isolated from a pond in McMurdo Dry Valley, Antarctica. Int J Syst Evol Microbiol 50:1553–1561 [CrossRef]
    [Google Scholar]
  20. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  21. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  22. Shieh W. Y., Chen A.-L., Chiu H.-H. 2000; Vibrio aerogenes sp. nov., a facultatively anaerobic marine bacterium that ferments glucose with gas production. Int J Syst Evol Microbiol 50:321–329 [CrossRef]
    [Google Scholar]
  23. Shieh W. Y., Chen Y.-W., Chaw S.-M., Chiu H.-H. 2003; Vibrio ruber sp. nov., a red, facultatively anaerobic, marine bacterium isolated from sea water. Int J Syst Evol Microbiol 53:479–484 [CrossRef]
    [Google Scholar]
  24. Shivaji S., Ray M. K., Rao N. S., Saisree L., Jagannadham M. V., Seshu Kumar G., Reddy G. S. N., Bhargava P. M. 1992; Sphingobacterium antarcticus sp. nov., a psychrotrophic bacterium from the soils of Schirmacher Oasis, Antarctica. Int J Syst Bacteriol 42:102–106 [CrossRef]
    [Google Scholar]
  25. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849 [CrossRef]
    [Google Scholar]
  26. Stackebrandt E., Frederiksen W., Garrity G. M., Grimont P. A. D., Kämpfer P., Maiden M. C. J., Nesme X., Rosselló-Mora R., Swings J. other authors 2002; Report of the ad hoc committee for the re-evaluations of the species definition in bacteriology. Int J Syst Evol Microbiol 52:1043–1047 [CrossRef]
    [Google Scholar]
  27. Sugita H., Matsuo N., Hirose Y., Iwato M., Deguchi Y. 1997; Vibrio sp. strain NM 10, isolated from the intestine of a Japanese coastal fish, has an inhibitory effect against Pasteurella piscicida . Appl Environ Microbiol 63:4986–4989
    [Google Scholar]
  28. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  29. Thompson F. L., Iida T., Swings J. 2004; Biodiversity of vibrios. Microbiol Mol Biol Rev 68:403–431 [CrossRef]
    [Google Scholar]
  30. Thompson F. L., Gevers D., Thompson C. C., Dawyndt P., Naser S., Hoste B., Munn C. B., Swings J. 2005; Phylogeny and molecular identification of vibrios on the basis of multilocus sequence analysis. Appl Environ Microbiol 71:5107–5115 [CrossRef]
    [Google Scholar]
  31. Tourova T. P., Antonov A. S. 1987; Identification of microorganisms by rapid DNA-DNA hybridisation. Methods Microbiol 19:333–355
    [Google Scholar]
  32. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.65017-0
Loading
/content/journal/ijsem/10.1099/ijs.0.65017-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF

Supplementary material 3

PDF

Supplementary material 4

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error