1887

Abstract

Two novel species are described on the basis of phenotypic, chemotaxonomic and genotypic studies. The two strains, designated YM10-847 and YM11-607, were isolated from river sediment and unidentified hydroid, respectively, of a marine lake. The strains were Gram-positive, catalase-positive bacteria with -ornithine as the diagnostic diamino acid of the peptidoglycan. The acyl type of the peptidoglycan was -glycolyl. The major menaquinones were MK-10 and MK-11 for YM10-847, and MK-11 and MK-12 for YM11-607. Mycolic acids were not detected. The DNA G+C content of strains YM10-847 and YM11-607 was 67.8 and 71.6 mol%, respectively. Comparative 16S rRNA gene sequence analysis revealed that the two strains belong to the genus DNA–DNA relatedness data showed that YM10-847 and YM11-607 are two novel species of this genus. On the basis of these results, strains YM10-847 and YM11-607 represent two novel species of the genus , for which the names sp. nov. and sp. nov. are proposed. The type strains are YM10-847 (=MBIC08264=DSM 18905) and YM11-607 (=MBIC07778=DSM 18904), respectively.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.65038-0
2007-10-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/57/10/2355.html?itemId=/content/journal/ijsem/10.1099/ijs.0.65038-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. 1990; Basic local alignment search tool. J Mol Biol 215:403–410 [CrossRef]
    [Google Scholar]
  2. Behrendt U., Ulrich A., Schumann P. 2001 Description of Microbacterium foliorum sp. nov. and Microbacterium phyllosphaerae sp. nov., isolated from the phyllosphere of grasses and the surface litter after mulching the sward, and reclassification of Aureobacterium resistens (Funke et al. 1998) as Microbacterium resistens comb. nov. Int J Syst Evol Microbiol 51, 1267–1276
  3. Collins M. D., Bradbury J. F. 1992; The genera Agromyces, Aureobacterium, Clavibacter, Curtobacterium , and Microbacterium . In The Prokaryotes pp 1355–1368 Edited by Balows A., Truper H. G., Dworkin M., Harder W., Schleifer K.-H. Berlin: Springer;
    [Google Scholar]
  4. Collins M. D., Pirouz T., Goodfellow M., Minnikin D. E. 1977; Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 100:221–230 [CrossRef]
    [Google Scholar]
  5. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229 [CrossRef]
    [Google Scholar]
  6. Guindon S., Gascuel O. 2003; A simple, fast and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704 [CrossRef]
    [Google Scholar]
  7. Guindon S., Lethiec F., Duroux P., Gascuel O. 2005; phyml Online–a web server for fast maximum likelihood-based phylogenetic inference. Nucleic Acids Res 33 (Web Server issue), W557–W559
  8. Hasegawa M., Kishino H., Yano T. 1985; Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol 22:160–174 [CrossRef]
    [Google Scholar]
  9. Kawamoto I., Oka T., Nara T. 1981; Cell wall composition of Micromonospora olivoasterospora, Micromonospora sagamiensis , and related organisms. J Bacteriol 146:527–534
    [Google Scholar]
  10. Kimura M., Ohta T. 1972; On the stochastic model for estimation of mutation distance between homologous proteins. J Mol Evol 2:87–90 [CrossRef]
    [Google Scholar]
  11. Kumar S., Tamura K., Nei M. 2004; mega3: Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Brief Bioinform 5:150–163 [CrossRef]
    [Google Scholar]
  12. Nei M., Kumar S. 2000; Phylogenetic inference: maximum parsimony methods. In Molecular Evolution and Phylogenetics pp 115–146 New York: Oxford University Press;
    [Google Scholar]
  13. Orla-Jensen S. 1919 The Lactic Acid Bacteria Copenhagen: Host & Sons;
    [Google Scholar]
  14. Park H. Y., Kim K. K., Jin L., Lee S. T. 2006; Microbacterium paludicola sp. nov., a novel xylanolytic bacterium isolated from swamp forest. Int J Syst Evol Microbiol 56:535–539 [CrossRef]
    [Google Scholar]
  15. Pridham T. G., Gottlieb D. 1948; The utilization of carbon compounds by some Actinomycetales as an aid for species determination. J Bacteriol 56:107–114
    [Google Scholar]
  16. Rivas R., Trujillo M. E., Sanchez M., Mateos P. F., Martinez-Molina E., Velazquez E. 2004; Microbacterium ulmi sp. nov., a xylanolytic, phosphate-solubilizing bacterium isolated from sawdust of Ulmus nigra . Int J Syst Bacteriol 54:513–517 [CrossRef]
    [Google Scholar]
  17. Saito H., Miura K. 1963; Preparation of transforming deoxyribonucleic acid by phenol treatment. Biochim Biophys Acta 72:619–629 [CrossRef]
    [Google Scholar]
  18. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  19. Takeuchi M., Hatano K. 1998; Union of the genera Microbacterium Orla-Jensen and Aureobacterium Collins et al. in a redefined genus Microbacterium. Int J Syst Bacteriol 48:739–747 [CrossRef]
    [Google Scholar]
  20. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128 [CrossRef]
    [Google Scholar]
  21. Tamaoka J., Katayama-Fujimura Y., Kuraishi H. 1983; Analysis of bacterial menaquinone mixtures by high performance liquid chromatography. J Appl Bacteriol 54:31–36 [CrossRef]
    [Google Scholar]
  22. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
  23. Tomiyasu I. 1982; Mycolic acid composition and thermally adaptive changes in Nocardia asteroides . J Bacteriol 151:828–837
    [Google Scholar]
  24. Uchida K., Aida K. 1977; Acyl type of bacterial cell wall: its simple identification by a colorimetric method. J Gen Appl Microbiol 23:249–260 [CrossRef]
    [Google Scholar]
  25. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
  26. Weisburg W. G., Barns S. M., Pelletier D. A., Lane D. J. 1991; 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703
    [Google Scholar]
  27. Yoon J., Yasumoto-Hirose M., Matsuo Y., Nozawa M., Matsuda S., Kasai H., Yokota A. 2007 Pelagicoccus mobilis gen. nov., sp. nov., Pelagicoccus albus sp. nov. and Pelagicoccus litoralis sp. nov.,three novel members of subdivision 4 within the phylum ‘ Verrucomicrobia ’ isolated from seawater by in situ cultivation Int J Syst Evol Microbiol 57:1377–1385 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.65038-0
Loading
/content/journal/ijsem/10.1099/ijs.0.65038-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error