1887

Abstract

An aerobic, moderately halophilic, Gram-negative, motile, non-sporulating bacterium, strain LIT2, was isolated from an oilfield-water injection after enrichment on crude oil. Strain LIT2 grew between 15 and 45 °C and optimally at 37 °C. It grew in the presence of 1–25 % (w/v) NaCl, with an optimum at 10 % (w/v) NaCl. Predominant fatty acids were C (26.9 %), C 7 (22.6 %), C 7 (20.4 %) C cyclo 8 (10.9 %) and C (8 %). Interestingly, the relative percentages of these last two fatty acids were intermediate compared with most species among the family for which fatty acid composition has been determined. The DNA G+C content was 53.7 mol%, which is very low among the family . Strain LIT2 exhibited 16S rRNA gene sequence similarity values of 94.06–95.15 % to members of the genus , 94.21–94.65 % to members of the genus and 93.57 % with the single species representative of the genus . Based on the phylogenetic and phenotypic evidence presented in this paper, we propose the name gen. nov., sp. nov. to accommodate strain LIT2. The type strain of is LIT2 (=CCUG 52917 =CIP 109206). A reassignment of the descriptive 16S rRNA signature characteristics of the family permitted placement of the new genus into the family.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.65088-0
2007-10-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/57/10/2307.html?itemId=/content/journal/ijsem/10.1099/ijs.0.65088-0&mimeType=html&fmt=ahah

References

  1. Abdelkafi S., Chamkha M., Casalot L., Sayadi S., Labat M. 2005; Isolation and characterization of a novel Bacillus sp., strain YAS1, capable of transforming tyrosol under hypersaline conditions. FEMS Microbiol Lett 252:79–84 [CrossRef]
    [Google Scholar]
  2. Abdelkafi S., Labat M., Casalot L., Chamkha M., Sayadi S. 2006a; Isolation and characterization of Halomonas sp. strain IMPC, a p -coumaric acid-metabolising bacterium that decarboxylates other cinnamic acids under hypersaline conditions. FEMS Microbiol Lett 255:108–114 [CrossRef]
    [Google Scholar]
  3. Abdelkafi S., Sayadi S., Ben Ali Gam Z., Casalot L., Labat M. 2006b; Bioconversion of ferulic acid to vanillic acid by Halomonas elongata isolated from table-olive fermentation. FEMS Microbiol Lett 262:115–120 [CrossRef]
    [Google Scholar]
  4. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 [CrossRef]
    [Google Scholar]
  5. Arahal D. R., Garcia M. T., Ludwig W., Schleifer K. H., Ventosa A. 2001a; Transfer of Halomonas canadensis and Halomonas israelensis to the genus Chromohalobacter as Chromohalobacter canadensis comb. nov. and Chromohalobacter israelensis comb. nov. Int J Syst Evol Microbiol 51:1443–1448
    [Google Scholar]
  6. Arahal D. R., Garcia M. T., Vargas C., Canovas D., Nieto J. J., Ventosa A. 2001b; Chromohalobacter salexigens sp. nov., a moderately halophilic species that includes Halomonas elongata DSM 3043 and ATCC 33174. Int J Syst Evol Microbiol 51:1457–1462
    [Google Scholar]
  7. Arahal D. R., Castillo A. M., Ludwig W., Schleifer K. H., Ventosa A. 2002; Proposal of Cobetia marina gen. nov., comb. nov. within the family Halomonadaceae to include the species Halomonas marina . Syst Appl Microbiol 25:207–211 [CrossRef]
    [Google Scholar]
  8. Benson D. A., Boguski M. S., Lipman D. J., Oullette B. F. F., Rapp B. A., Wheeler D. L. 1999; GenBank. Nucleic Acids Res 27:12–17 [CrossRef]
    [Google Scholar]
  9. Dobson S. J., Franzmann P. D. 1996; Unification of the genera Deleya (Baumann et al . 1983), Halomonas (Vreeland et al . 1980),and Halovibrio (Fendrich 1988) and the species Paracoccus halodenitrificans (Robinson and Gibbons 1952) into a single genus, Halomonas , and placement of the genus Zymobacter in the family Halomonadaceae . Int J Syst Bacteriol 46:550–558 [CrossRef]
    [Google Scholar]
  10. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [CrossRef]
    [Google Scholar]
  11. Franzmann P. D., Wehmeyer U., Stackebrandt E. 1988; Halomonadaceae fam. nov., a new family of the class Proteobacteria to accommodate the genera Halomonas and Deleya . Syst Appl Microbiol 11:16–19 [CrossRef]
    [Google Scholar]
  12. Hall T. A. 1999; BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98 NT. Nucleic Acids Symp Ser 41:95–98
    [Google Scholar]
  13. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism vol. 3 pp 21–132 Edited by Munro H. N. New York: Academic Press;
    [Google Scholar]
  14. Kovacs N. 1956; Identification of Pseudomonas pyocyanea by the oxidase reaction. Nature 178: 703
    [Google Scholar]
  15. Kushner D. J. 1978; Life in high salt and solute concentrations: halophilic bacteria. In Microbial Life in Extreme Environments pp 317–368 Edited by Kushner D. J. London: Academic Press;
    [Google Scholar]
  16. Lane D. J., Pace B., Olsen G. J., Stahl D. A., Sogin M. L., Pace N. R. 1985; Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc Natl Acad Sci U S A 82:6955–6959 [CrossRef]
    [Google Scholar]
  17. Maidak B. L., Cole J. R., Lilburn T. G., Parker C. T., Saxman P. R., Farris R. J., Garrity G. M., Olsen G. J., Schmidt T. M., Tiedje J. M. 2001; The RDP-II (Ribosomal Database Project. Nucleic Acids Res 29:173–174 [CrossRef]
    [Google Scholar]
  18. Martinez-Canovas M. J., Quesada E., Llamas I., Bejar V. 2004; Halomonas ventosae sp. nov., a moderately halophilic, denitrifying, exopolysaccharide-producing bacterium. Int J Syst Evol Microbiol 54:733–737 [CrossRef]
    [Google Scholar]
  19. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [CrossRef]
    [Google Scholar]
  20. Ntougias S., Zervakis G. I., Fasseas C. 2007; Halotalea alkalilenta gen. nov., sp. nov., a novel osmotolerant and alkalitolerant bacterium from alkaline olive mill wastes, and emended description of the family Halomonadaceae Franzmann et al. 1989, emend. Dobson and Franzmann 1996 Int J Syst Evol Microbiol 57:1975–1983 [CrossRef]
    [Google Scholar]
  21. Oren A. 2002; Diversity of halophilic microorganisms: environments, phylogeny, physiology and applications. J Ind Microbiol Biotechnol 28:56–63 [CrossRef]
    [Google Scholar]
  22. Peçonek J., Gruber C., Gallego V., Ventosa A., Busse H.-J., Kämpfer P., Radax C., Stan-Lotter H. 2006; Reclassification of Pseudomonas beijerinckii Hof 1935 as Chromohalobacter beijerinckii comb. nov., and emended description of the species. Int J Syst Evol Microbiol 56:1953–1957 [CrossRef]
    [Google Scholar]
  23. Prado B., Lizama C., Aguilera M., Ramos-Cormenzana A., Fuentes S., Campos V., Monteoliva-Sanchez M. 2006; Chromohalobacter nigrandesensis sp. nov., a moderately halophilic, Gram-negative bacterium isolated from Lake Tebenquiche on the Atacama Saltern, Chile. Int J Syst Evol Microbiol 56:647–651 [CrossRef]
    [Google Scholar]
  24. Quillaguamán J., Hatti-Kaul R., Mattiasson B., Alvarez M. T., Delgado O. 2004a; Halomonas boliviensis sp. nov., an alkalitolerant, moderate halophile isolated from soil around a Bolivian hypersaline lake. Int J Syst Evol Microbiol 54:721–725 [CrossRef]
    [Google Scholar]
  25. Quillaguamán J., Delgado O., Mattiasson B., Hatti-Kaul R. 2004b; Chromohalobacter sarecensis sp. nov., a psychrotolerant moderate halophile isolated from the saline Andean region of Bolivia. Int J Syst Evol Microbiol 54:1921–1926 [CrossRef]
    [Google Scholar]
  26. Romanenko L. A., Schumann P., Zhukova N. V., Rohde M., Mikhailov V. V., Stackebrandt E. 2003; Oceanisphaera litoralis gen. nov., sp. nov., a novel halophilic bacterium from marine bottom sediments. Int J Syst Evol Microbiol 53:1885–1888 [CrossRef]
    [Google Scholar]
  27. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  28. Vargas C., Kallimanis A., Koukkou A. I., Calderon M. I., Canovas D., Iglesias-Guerra F., Drainas C., Ventosa A., Nieto J. J. 2005; Contribution of chemical changes in membrane lipids to the osmoadaptation of the halophilic bacterium Chromohalobacter salexigens . Syst Appl Microbiol 28:571–581 [CrossRef]
    [Google Scholar]
  29. Ventosa A., Gutierrez M. C., Garcia M. T., Ruiz-Berraquero F. 1989; Classification of “ Chromobacterium marismortui ” in a new genus, Chromohalobacter gen. nov., as Chromohalobacter marismortui comb. nov., nom. rev.. Int J Syst Bacteriol 39382–386 [CrossRef]
    [Google Scholar]
  30. Widdel F., Pfennig N. 1981 Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. I. Isolation of new sulfate-reducing bacteria enriched with acetate from saline environments. Description of Desulfobacter postgatei gen. nov., sp. nov. Arch Microbiol 129395–400 [CrossRef]
  31. Yoon J.-H., Choi S. H., Lee K.-C., Kho Y. H., Kang K. H., Park Y.-H. 2001; Halomonas marisflavae sp. nov., a halophilic bacterium isolated from the Yellow Sea in Korea. Int J Syst Evol Microbiol 51:1171–1177 [CrossRef]
    [Google Scholar]
  32. Yoon J.-H., Lee K.-C., Kho Y. H., Kang K. H., Kim C.-J., Park Y.-H. 2002; Halomonas alimentaria sp. nov., isolated from jeotgal, a traditional Korean fermented seafood. Int J Syst Evol Microbiol 52:123–130
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.65088-0
Loading
/content/journal/ijsem/10.1099/ijs.0.65088-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error