1887

Abstract

One hundred and forty-four fluorescent pseudomonad strains isolated from various environments (soil, water, plant rhizosphere, hospital) and received as (83 strains), biovar A (49 strains), biovar B (10 strains) and biovar C (2 strains), were analysed by the pyoverdine-isoelectrofocusing and pyoverdine-mediated iron uptake methods of siderotyping. Both methods demonstrated a great diversity among these strains, which could be subdivided into 35 siderovars. Some siderovars specifically included strains that have subsequently been transferred to well-defined species, e.g. or , or which could be related by their siderotype to or . Other siderovars included strains sharing a high level of DNA-DNA relatedness (>70 %), thus demonstrating that siderotyping could easily circumscribe strains at the species level. However, a group of seven strains, including the type strain, ATCC 12633, were allocated into four siderovars, despite sharing DNA–DNA relatedness values of higher than 70 %. Interestingly, the strong genomic relationships between these seven strains were supported by the structural relationships among their pyoverdines, thus reflecting their phylogenetic affinities. These results strongly support the view that pyoverdine-based siderotyping could be used as a powerful tool in taxonomy.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.65233-0
2007-11-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/57/11/2543.html?itemId=/content/journal/ijsem/10.1099/ijs.0.65233-0&mimeType=html&fmt=ahah

References

  1. Anzai Y., Kim H., Park J.-Y., Wakabayashi H., Oyaizu H. 2000; Phylogenetic affiliation of the pseudomonads based on 16S rRNA sequence. Int J Syst Evol Microbiol 50:1563–1589 [CrossRef]
    [Google Scholar]
  2. Barelmann I., Taraz K., Budzikiewicz H., Geoffroy V. A., Meyer J.-M. 2002; The structures of the pyoverdins from two Pseudomonas fluorescens strains accepted mutually by their respective producers. Z Naturforsch [C] 57:9–16
    [Google Scholar]
  3. Barrett E. L., Solanes R. E., Tang J. S., Palleroni N. J. 1986; Pseudomonas fluorescens biovar V: its resolution into distinct component groups and the relationship of these groups to other P. fluorescens biovars, to P. putida , and to psychrotrophic pseudomonads associated with food spoilage. J Gen Microbiol 132:2709–2721
    [Google Scholar]
  4. Bossis E. 1995; Les Pseudomonas fluorescents de la rhizosphère: étude taxonomique et effets sur la croissance de la tomate et du maïs, de la germination à la levée . p 143 PhD thesis Université de Nantes; France:
  5. Bossis E., Lemanceau P., Latour X., Gardan L. 2000; The taxonomy of Pseudomonas fluorescens and Pseudomonas putida : current status and need for revision. Agronomie 20:51–63
    [Google Scholar]
  6. Bouallegue O., Mzoughi R., Weill F. X., Mahdhaoui N., Ben Salem Y., Sboui H., Grimont F., Grimont P. A. D. 2004; Outbreak of Pseudomonas putida bacteremia in a neonatal intensive care unit. J Hosp Infect 57:88–91 [CrossRef]
    [Google Scholar]
  7. Brosch R., Lefèvre M., Grimont F., Grimont P. A. D. 1996; Taxonomic diversity of pseudomonads revealed by computer-interpretation of ribotyping data. Syst Appl Microbiol 19:541–555 [CrossRef]
    [Google Scholar]
  8. Budzikiewicz H. 2004; Siderophores of the Pseudomonadaceae sensu stricto (fluorescent and non-fluorescent Pseudomonas spp.). Fortschr Chem Org Naturst 87:81–237
    [Google Scholar]
  9. Budzikiewicz H., Schröder H., Taraz K. 1992; Zur biogenese der Pseudomonas- siderophore: der nachweis analoger strukturen eines pyoverdin-desferribactin-paares. Z Naturforsch [C] 47:26–32
    [Google Scholar]
  10. Budzikiewicz H., Kilz S., Taraz K., Meyer J.-M. 1997; Identical pyoverdines from Pseudomonas fluorescens 9AW and from Pseudomonas putida 9BW. Z Naturforsch [C] 52:721–728
    [Google Scholar]
  11. Budzikiewicz H., Fernandez D. U., Fuchs R., Michalke R., Taraz K., Ruangviriyachai C. 1999; Pyoverdines with a Lys ϵ-amino link in the peptide chain?. Z Naturforsch [C] 54:1021–1026
    [Google Scholar]
  12. Bultreys A., Gheysen I., Maraite H., De Hoffmann E. 2001; Characterization of fluorescent and non fluorescent peptide siderophores produced by Pseudomonas syringae strains and their potential use in strain identification. Appl Environ Microbiol 67:1718–1727 [CrossRef]
    [Google Scholar]
  13. Buyer J. S., Wright J. M., Leong J. 1986; Structure of pseudobactin A214, a siderophore from a bean-deleterious Pseudomonas . Biochemistry 25:5492–5499 [CrossRef]
    [Google Scholar]
  14. Crosa J. H., Brenner D. J., Falkow S. 1973; Use of a single-strand-specific nuclease for analysis of bacterial and plasmid deoxyribonucleic acid homo- and heteroduplexes. J Bacteriol 115:904–911
    [Google Scholar]
  15. Dabboussi F., Hamze M., Singer E., Geoffroy V., Meyer J.-M., Izard D. 2002; Pseudomonas mosselii sp. nov., a novel species isolated from clinical specimens. Int J Syst Evol Microbiol 52:363–376
    [Google Scholar]
  16. Dawson S. L., Fry J. C., Dancer B. N. 2002; A comparative evaluation of five typing techniques for determining the diversity of fluorescent pseudomonads. J Microbiol Methods 50:9–22 [CrossRef]
    [Google Scholar]
  17. Delorme S., Lemanceau P., Christen R., Corberand T., Meyer J.-M., Gardan L. 2002; Pseudomonas lini sp. nov., a novel species from bulk and rhizospheric soils. Int J Syst Evol Microbiol 52:513–523
    [Google Scholar]
  18. Elomari M., Izard D., Vincent P., Coroler L., Leclerc H. 1994; Comparison of ribotyping analysis and numerical taxonomy studies of Pseudomonas putida biovar A. Syst Appl Microbiol 17:361–369 [CrossRef]
    [Google Scholar]
  19. Elomari M., Coroler L., Hoste B., Gillis M., Izard D., Leclerc H. 1996; DNA relatedness among Pseudomonas strains isolated from natural mineral waters and proposal of Pseudomonas veronii sp. nov. Int J Syst Bacteriol 46:1138–1144 [CrossRef]
    [Google Scholar]
  20. Elomari M., Coroler L., Verhille S., Izard D., Leclerc H. 1997; Pseudomonas monteilii sp. nov., isolated from clinical specimens. Int J Syst Bacteriol 47:846–852 [CrossRef]
    [Google Scholar]
  21. Fuchs R., Schäfer M., Geoffroy V., Meyer J.-M. 2001; Siderotyping - a powerful tool for the characterization of pyoverdines. Curr Top Med Chem 1:31–57 [CrossRef]
    [Google Scholar]
  22. Grimont P. A. D., Popoff M. Y., Grimont F., Coynault C., Lemelin M. 1980; Reproducibility and correlation study of three deoxyribonucleic acid hybridization procedures. Curr Microbiol 4:325–330 [CrossRef]
    [Google Scholar]
  23. Grimont P. A. D., Vancanneyt M., Lefevre M., Vandemeulebroecke K., Vauterin L., Brosch R., Kersters K., Grimont F. 1996; Ability of Biolog and Biotype-100 systems to reveal the taxonomic diversity of the pseudomonads. Syst Appl Microbiol 19:510–527 [CrossRef]
    [Google Scholar]
  24. Gwose I., Taraz K. 1992; Pyoverdine aus Pseudomonas putida . Z Naturforsch [C] 47:487–502
    [Google Scholar]
  25. Hilario E., Buckley T. R., Young J. M. 2004; Improved resolution on the phylogenetic relationships among Pseudomonas by the combined analysis of atpD , carA , recA and 16S rDNA. Antonie van Leeuwenhoek 86:51–64 [CrossRef]
    [Google Scholar]
  26. Hohlneicher U., Hartmann R., Taraz K., Budzikiewicz H. 1995; Pyoverdin, ferribactin, azotobactin - a new triade of siderophores from Pseudomonas chlororaphis ATCC 9446 and its relation to Pseudomonas fluorescens ATCC 13525. Z Naturforsch [C] 50337–344
  27. Jacques P., Ongena M., Gwose I., Seinsche D., Schröder H., Delfosse P., Thonart P., Taraz K., Budzikiewicz H. 1995; Structure and characterization of isopyoverdin from Pseudomonas putida BTP1 and its relation to the biogenetic pathway leading to pyoverdins. Z Naturforsch [C] 50:622–629
    [Google Scholar]
  28. Latour X., Corberand T., Laguerre G., Allard F., Lemanceau P. 1996; The composition of fluorescent pseudomonad populations associated with roots is influenced by plant and soil type. Appl Environ Microbiol 62:2449–2456
    [Google Scholar]
  29. Lemanceau P., Corberand T., Gardan L., Latour X., Laguerre G., Boeufgras J. M., Alabouvette C. 1995; Effect of two plant species, Flax ( Linum usitatissinum L.) and tomato ( Lycopersicon esculentum Mill.), on the diversity of soilborne populations of fluorescent pseudomonads. Appl Environ Microbiol 61:1004–1012
    [Google Scholar]
  30. Mattar J. 1993; Les Pseudomonas fluorescents de la rhizosphère: caractérisation, incidence de la température et de la microflore autochtone sur la colonisation racinaire . p 87 PhD thesis Université de Lyon I; France:
  31. Meyer J.-M. 2000; Pyoverdines: pigments, siderophores and potential taxonomic markers of fluorescent Pseudomonas species. Arch Microbiol 174:135–142 [CrossRef]
    [Google Scholar]
  32. Meyer J.-M., Geoffroy V. 2004; Environmental fluorescent Pseudomonas and pyoverdine diversity: how siderophores could help microbiologists in bacterial identification and taxonomy. In Iron Transport in Bacteria pp 451–468 Edited by Crosa J. H., Mey A. R., Payne S. M. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  33. Meyer J.-M., Stintzi A., De Vos D., Cornelis P., Tappe R., Taraz K., Budzikiewicz H. 1997; Use of siderophores to type pseudomonads: the three Pseudomonas aeruginosa pyoverdine systems. Microbiology 143:35–43 [CrossRef]
    [Google Scholar]
  34. Meyer J.-M., Geoffroy V. A., Baida N., Gardan L., Izard D., Lemanceau P., Achouak W., Palleroni N. J. 2002; Siderophore typing, a powerful tool for the identification of fluorescent and non-fluorescent Pseudomonas . Appl Environ Microbiol 68:2745–2753 [CrossRef]
    [Google Scholar]
  35. Moore E. R. B., Mau M., Arnscheidt A., Böttger E. C., Hutson R. A., Collins M. D., Van De Peer Y., De Wachter R., Timmis K. N. 1996; The determination and comparison of the 16S rRNA gene sequences of species of the genus Pseudomonas ( sensu stricto ) and estimation of the natural intrageneric relationships. Syst Appl Microbiol 19:478–492 [CrossRef]
    [Google Scholar]
  36. Palleroni N. J. 1984; Genus I. Pseudomonas Migula 1894. In Bergey's Manual of Systematic Bacteriology vol 1 pp 141–199 Edited by Krieg N. R., Holt J. G. Baltimore: Williams and Wilkins;
    [Google Scholar]
  37. Palleroni N. J. 1993; Pseudomonas classification. A new case history in the taxonomy of gram-negative bacteria. Antonie van Leeuwenhoek 64:231–251
    [Google Scholar]
  38. Palleroni N. J. 2005; Pseudomonas . In Bergey's Manual of Systematic Bacteriology 2nd edn., Part B. The Gammaproteobacteria pp 323–379 Edited by Garrity G. M., Brenner D. J., Krieg N. R., Staley J. T. New York: Springer;
    [Google Scholar]
  39. Parret A. H. A., De Mot R. 2000; Bacteriocin production by rhizosphere-colonizing fluorescent Pseudomonas . In Proceedings of the 5th International PGPR Workshop. Cordoba, Argentina
    [Google Scholar]
  40. Persmark M., Frejd T., Mattiasson B. 1990; Purification, characterization, and structure of pseudobactin 589A, a siderophore from a plant growth promoting Pseudomonas . Biochemistry 29:7348–7356 [CrossRef]
    [Google Scholar]
  41. Perz J. F., Craig A. S., Stratton C. W., Bodner S. J., Phillips W. E. Jr, Schaffner W. 2005; Pseudomonas putida septicemia in a special care nursery due to contaminated flush solution prepared in a hospital pharmacy. J Clin Microbiol 43:5316–5318 [CrossRef]
    [Google Scholar]
  42. Ravel J., Cornelis P. 2003; Genomics of pyoverdine-mediated iron uptake in pseudomonads. Trends Microbiol 11:195–200 [CrossRef]
    [Google Scholar]
  43. Seinsche D., Taraz K., Budzikiewicz H., Gondol D. 1993; Neue pyoverdin-siderophore aus Pseudomonas putida C. J Prakt Chem Chem-Ztg 335:157–168 [CrossRef]
    [Google Scholar]
  44. Shivaji S., Rao N. S., Saisree L., Shet V., Reddy G. S. N., Bhargava P. M. 1989; Isolation and identification of Pseudomonas spp. from Schirmacher Oasis, Antarctica. Appl Environ Microbiol 55:767–770
    [Google Scholar]
  45. Spilker T., Coenye T., Vandamme P., LiPuma J. J. 2004; PCR-based assay for differentiation of Pseudomonas aeruginosa from other Pseudomonas species recovered from cystic fibrosis patients. J Clin Microbiol 42:2074–2079 [CrossRef]
    [Google Scholar]
  46. Stanier R. Y., Palleroni N. J., Doudoroff M. 1966; The aerobic pseudomonads: a taxonomic study. J Gen Microbiol 43:159–271 [CrossRef]
    [Google Scholar]
  47. Sultana R., Siddiqui B. S., Taraz K., Budzikiewicz H., Meyer J.-M. 2000; A pyoverdine from Pseudomonas putida CFML 90–51 with a Lys ϵ-amino link in the peptide chain. Biometals 13:147–152 [CrossRef]
    [Google Scholar]
  48. Sultana R., Siddiqui B. S., Taraz K., Budzikiewicz H., Meyer J.-M. 2001a; An isopyoverdin from Pseudomonas putida CFML 90–44. Z Naturforsch [C] 56:303–307
    [Google Scholar]
  49. Sultana R., Siddiqui B. S., Taraz K., Budzikiewicz H., Meyer J.-M. 2001b; An isopyoverdin from Pseudomonas putida CFML 90–33. Tetrahedron 57:1019–1023 [CrossRef]
    [Google Scholar]
  50. Sutra L., Risède J. M., Gardan L. 2000; Isolation of fluorescent pseudomonads from the rhizosphere of banana plants antagonistic towards root necrosing fungi. Lett Appl Microbiol 31:289–293 [CrossRef]
    [Google Scholar]
  51. Teintze M., Hossain M. B., Barnes C. L., Leong J., van der Helm D. 1981; Structure of ferric pseudobactin, a siderophore from a plant growth promoting Pseudomonas . Biochemistry 20:6446–6457 [CrossRef]
    [Google Scholar]
  52. Tesar M., Hoch C., Moore E. R. B., Timmis K. N. 1996; Westprinting: development of a rapid immunochemical identification for species within the genus Pseudomonas sensu stricto . Syst Appl Microbiol 19:577–588 [CrossRef]
    [Google Scholar]
  53. Timmis K. N. 2002; Pseudomonas putida : a cosmopolitan opportunist par excellence . Environ Microbiol 4:779–781 [CrossRef]
    [Google Scholar]
  54. Uria-Fernandez D., Geoffroy V., Schäfer M., Meyer J.-M., Budzikiewicz H. 2003; Structure revision of several pyoverdins produced by plant-growth promoting and plant-deleterious Pseudomonas species. Monatsh Chem 134:1421–1431 [CrossRef]
    [Google Scholar]
  55. Vancanneyt M., Torck U., Dewettinck D., Vaerewijck M., Kersters K. 1996; Grouping of pseudomonads by SDS-PAGE of whole-cell proteins. Syst Appl Microbiol 19:556–568 [CrossRef]
    [Google Scholar]
  56. Vandamme P., Pot B., Gillis M., De Vos P., Kersters K., Swings J. 1996; Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiol Rev 60:407–438
    [Google Scholar]
  57. Verhille S., Baida N., Dabboussi F., Izard D., Leclerc H. 1999; Taxonomic study of bacteria isolated from natural mineral waters: proposal of Pseudomonas jessenii sp.nov. and Pseudomonas mandelii sp. nov. Syst Appl Microbiol 22:45–58 [CrossRef]
    [Google Scholar]
  58. Yamamoto S., Harayama S. 1995; PCR amplification and direct sequencing of gyrB genes with universal primers and their application to the detection and taxonomic analysis of Pseudomonas putida strains. Appl Environ Microbiol 61:1104–1109
    [Google Scholar]
  59. Yamamoto S., Harayama S. 1998; Phylogenetic relationships of Pseudomonas putida strains deduced from the nucleotide sequences of gyrB, rpoD and 16 rRNA genes. Int J Syst Bacteriol 48:813–819 [CrossRef]
    [Google Scholar]
  60. Yamamoto S., Kasai H., Arnold D. L., Jackson R. W., Vivian A., Harayama S. 2000; Phylogeny of the genus Pseudomonas : intrageneric structure reconstructed from the nucleotide sequences of gyrB and rpoD genes. Microbiology 146:2385–2394
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.65233-0
Loading
/content/journal/ijsem/10.1099/ijs.0.65233-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error