1887

Abstract

Two Gram-negative, non-motile, coccoid or rod-shaped, chemoheterotrophic bacteria designated strains YM21-132 and YM27-005 were isolated from marine animals, and were subjected to a polyphasic taxonomic examination. Phylogenetic analyses based on 16S rRNA gene sequences indicated that the two isolates belong to the genus of the phylum ‘’ (subdivision 1). The novel isolates shared approximately 97–98 % sequence similarity with each other and showed 93–97 % similarity with species of the family . The level of DNA–DNA relatedness between strains YM21-132 and YM27-005 was less than 70 %, which is accepted as the phylogenetic definition of a species. Both strains produced reddish carotenoid pigments and squalene. The cell wall peptidoglycan of both strains contained muramic acid and -diaminopimelic acid. The G+C contents of the genomic DNA were 48.0 mol% (strain YM21-132) and 50.3 mol% (strain YM27-005). The presence of MK-8 and MK-9 as the major isoprenoid quinones, and iso-C, iso-C and C 7 as the major cellular fatty acids supported the identification of the two novel strains as members of the genus . On the basis of polyphasic taxonomic studies, it was concluded that these strains should be classified as representing two novel, separate species in the genus within the phylum ‘’, for which the names sp. nov. (type strain YM21-132=MBIC08281=KCTC 12906) and sp. nov. (type strain YM27-005=MBIC08282=KCTC 12907) are proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.65243-0
2007-10-01
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/57/10/2337.html?itemId=/content/journal/ijsem/10.1099/ijs.0.65243-0&mimeType=html&fmt=ahah

References

  1. Dedysh S. N., Pankratov T. A., Belova S. E., Kulichevskaya I. S., Liesack W. 2006; Phylogenetic analysis and in situ identification of Bacteria community composition in an acidic Sphagnum peat bog. Appl Environ Microbiol 72:2110–2117 [CrossRef]
    [Google Scholar]
  2. Derrien M., Vaughan E. E., Plugge C. M., de Vos W. M. 2004; Akkermansia muciniphila gen nov., sp. nov., a human intestinal mucin-degrading bacterium. Int J Syst Evol Microbiol 54:1469–1476 [CrossRef]
    [Google Scholar]
  3. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229 [CrossRef]
    [Google Scholar]
  4. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [CrossRef]
    [Google Scholar]
  5. Fitch W. M. 1971; Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416 [CrossRef]
    [Google Scholar]
  6. Harper J. J., Davis G. H. G. 1979; Two-dimensional thin-layer chromatography for amino acid analysis of bacterial cell walls. Int J Syst Bacteriol 29:56–58 [CrossRef]
    [Google Scholar]
  7. Haukka K., Heikkinen E., Kairesalo T., Karjalainen H., Sivonen K. 2005; Effect of humic material on the bacterioplankton community composition in boreal lakes and mesocosms. Environ Microbiol 7:620–630 [CrossRef]
    [Google Scholar]
  8. Haukka K., Kolmonen E., Hyder R., Hietala J., Vakkilainen K., Kairesalo T., Haario H., Sivonen K. 2006; Effect of nutrient loading on bacterioplankton community composition in lake mesocosms. Microb Ecol 51:137–146 [CrossRef]
    [Google Scholar]
  9. Hedlund B. P., Gosink J. J., Staley J. T. 1996; Phylogeny of Prosthecobacter , the fusiform caulobacters: members of a recently discovered division of the Bacteria . Int J Syst Bacteriol 46:960–966 [CrossRef]
    [Google Scholar]
  10. Hedlund B. P., Gosink J. J., Staley J. T. 1997; Verrucomicrobia div. nov., a new division of the bacteria containing three new species of Prosthecobacter . Antonie van Leeuwenhoek 72:29–38 [CrossRef]
    [Google Scholar]
  11. Hugenholtz P., Goebel B. M., Pace N. R. 1998; Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J Bacteriol 180:4765–4774
    [Google Scholar]
  12. Joseph S. J., Hugenholtz P., Sangwan P., Osborne C. A., Janssen P. H. 2003; Laboratory cultivation of widespread and previously uncultured soil bacteria. Appl Environ Microbiol 69:7210–7215 [CrossRef]
    [Google Scholar]
  13. Kanokratana P., Chanapan S., Pootanakit K., Eurwilaichitr L. 2004; Diversity and abundance of Bacteria and Archaea in the Bor Khlueng hot spring in Thailand. J Basic Microbiol 44:430–444 [CrossRef]
    [Google Scholar]
  14. Kasai H., Katsuta A., Sekiguchi H., Matsuda S., Adachi K., Shindo K., Yoon J., Yokota A., Shizuri Y. 2007; Rubritalea squalenifaciens sp. nov., a squalene-producing marine bacterium belonging to subdivision 1 of the phylum ‘ Verrucomicrobia ’. Int J Syst Evol Microbiol 57:1630–1634 [CrossRef]
    [Google Scholar]
  15. Katsuta A., Adachi K., Matsuda S., Shizuri Y., Kasai H. 2005; Ferrimonas marina sp. nov. Int J Syst Evol Microbiol 55:1851–1855 [CrossRef]
    [Google Scholar]
  16. Kimura M. 1983 The Neutral Theory of Molecular Evolution Cambridge: Cambridge University Press;
    [Google Scholar]
  17. Kumar S., Tamura K., Nei M. 2004; mega3: integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Brief Bioinform 5:150–163 [CrossRef]
    [Google Scholar]
  18. Lyman J., Fleming R. H. 1940; Composition of sea water. J Mar Res 3:134–146
    [Google Scholar]
  19. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3:208–218 [CrossRef]
    [Google Scholar]
  20. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [CrossRef]
    [Google Scholar]
  21. Murray R. G. E., Doetsch R. N., Robinow C. F. 1994; Determinative and cytological light microscopy. In Methods for General and Molecular Bacteriology . pp 21–41 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
  22. Rappé M. S., Giovannoni S. J. 2003; The uncultured microbial majority. Annu Rev Microbiol 57:369–394 [CrossRef]
    [Google Scholar]
  23. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  24. Scheuermayer M., Gulder T. A., Bringmann G., Hentschel U. 2006 Rubritalea marina gen. nov., sp. nov., a marine representative of the phylum ‘ Verrucomicrobia ’, isolated from a sponge ( Porifera ). Int J Syst Evol Microbiol 562119–2124 [CrossRef]
  25. Schleifer K. H., Kandler O. 1972; Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36:407–477
    [Google Scholar]
  26. Schlesner H. 1987; Verrucomicrobium spinosum gen. nov., sp. nov.; a fimbriated prosthecate bacterium. Syst Appl Microbiol 10:54–56 [CrossRef]
    [Google Scholar]
  27. Shindo K., Mikami K., Tamesada E., Takaichi S., Adachi K., Misawa N., Maoka T. 2007; Diapolycopenedioic acid xylosyl ester, a novel glyco-C30-carotenoic acid produced by a new marine bacterium Rubritalea squalenifaciens . Tetrahedron Lett 48:2725–2727 [CrossRef]
    [Google Scholar]
  28. Staley J. T., DeBont J. A. M., DeJonge K. 1976; Prosthecobacter fusiformis nov. gen. et sp., the fusiform caulobacter. Antonie van Leeuwenhoek 42:333–342 [CrossRef]
    [Google Scholar]
  29. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
  30. Vandekerckhove T. T. M., Willems A., Gillis M., Coomans A. 2000; Occurrence of novel verrucomicrobial species, endosymbiotic and associated with parthenogenesis in Xiphinema americanum -group species (Nematoda, Longidoridae). Int J Syst Evol Microbiol 50:2197–2205 [CrossRef]
    [Google Scholar]
  31. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
  32. Weisburg W. G., Barns S. M., Pelletier D. A., Lane D. J. 1991; 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703
    [Google Scholar]
  33. Yokota A., Tamura T., Nishii T., Hasegawa T. 1993 Kineococcus aurantiacus gen. nov., sp. nov., a new aerobic, gram-positive, motile coccus with meso -diaminopimelic acid and arabinogalactan in the cell wall. Int J Syst Bacteriol 4352–57 [CrossRef]
  34. Yoon J., Yasumoto-Hirose M., Matsuo Y., Nozawa M., Matsuda S., Kasai H., Yokota A. 2007; Pelagicoccus mobilis gen. nov., sp. nov., Pelagicoccus albus sp. nov. and Pelagicoccus litoralis sp. nov.,three novel members of subdivision 4 within the phylum ‘ Verrucomicrobia ’ isolated from seawater by in situ cultivation. Int J Syst Evol Microbiol 57:1377–1385 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.65243-0
Loading
/content/journal/ijsem/10.1099/ijs.0.65243-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error