1887

Abstract

A novel Gram-negative, non-motile, rod-shaped bacterium, designated CW-KD 4, was isolated from a polluted soil sample collected from Jiangsu Province, China, by using a classic enrichment method. Based on 16S rRNA gene sequence analysis, the novel strain represented a deep-rooting lineage within the class that was clustered with the genera and and some other unidentified bacteria. Polyphasic taxonomic studies revealed that strain CW-KD 4 showed rather distant relationships to its phylogenetically closest neighbours, including the two recognized genera and . Strain CW-KD 4 showed only 89.9 % and 89.7 % 16S rRNA gene sequence similarities to the type species of the genera and , respectively. The predominant isoprenoid quinone of strain CW-KD 4 was Q-8 with minor components including Q-9, MK-7 and MK-6. The major fatty acids were C, C 7 and summed feature 3. The G+C content of the DNA was 65.1 mol%. On the basis of its distinctive phenotypic and genotypic characteristics, strain CW-KD 4 represents a new genus and a novel species in the class , for which the name gen. nov., sp. nov. is proposed. The type strain is CW-KD 4 (=DSM 18980=KCTC 12881=CCTCC AB 206145). In addition, a new family, fam. nov., is proposed to house the genus gen. nov.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.65244-0
2008-01-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/58/1/184.html?itemId=/content/journal/ijsem/10.1099/ijs.0.65244-0&mimeType=html&fmt=ahah

References

  1. Busti, E., Cavaletti, L., Monciardini, P., Schumann, P., Rohde, M., Sosio, M. & Donadio, S.(2006).Catenulispora acidiphila gen. nov., sp. nov., a novel, mycelium-forming actinomycete, and proposal of Catenulisporaceae fam. nov. Int J Syst Evol Microbiol 56, 1741–1746.[CrossRef] [Google Scholar]
  2. Ellis, L. B. M., Roe, D. & Wackett, L. P.(2006). The University of Minnesota biocatalysis/biodegradation database: the first decade. Nucleic Acids Res 34, D517–D521.[CrossRef] [Google Scholar]
  3. Felsenstein, J.(1981). Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17, 368–376.[CrossRef] [Google Scholar]
  4. Felsenstein, J.(1985). Conference limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791.[CrossRef] [Google Scholar]
  5. Felsenstein, J.(1993).phylip (phylogeny inference package), version 3.5c. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle, USA.
  6. Gerhardt, P., Murray, R. G. E., Wood, W. A. & Krieg, N. R. (editors)(1994).Methods for General Molecular Bacteriology. Washington, DC: American Society for Microbiology.
  7. Hall, T. A.(1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41, 95–98. [Google Scholar]
  8. Hu, H.-Y., Lim, B.-R., Naohiro, G. & Koich, F.-J.(2001). Analytical precision and repeatability of respiratory quinones for quantitative study of microbial community structure in environmental samples. J Microbiol Methods 47, 17–24.[CrossRef] [Google Scholar]
  9. Kimura, M.(1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequence. J Mol Evol 16, 111–120.[CrossRef] [Google Scholar]
  10. Kimura, M.(1983).The Neutral Theory of Molecular Evolution. Cambridge: Cambridge University Press.
  11. Kumar, S., Tamura, K. & Nei, M.(2004).mega3: integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Brief Bioinform 5, 150–163.[CrossRef] [Google Scholar]
  12. Li, W. J., Xu, P., Schumann, P., Zhang, Y. Q., Pukall, R., Xu, L. H., Stackebrandt, E. & Jiang, C. L.(2007).Georgenia ruanii sp. nov., a novel actinobacterium isolated from forest soil in Yunnan (China) and emended description of the genus Georgenia. Int J Syst Evol Microbiol 57, 1424–1428.[CrossRef] [Google Scholar]
  13. Mandel, M. & Marmur, J.(1968). Use of ultraviolet absorbance temperature profile for determining the guanine plus cytosine content of DNA. Methods Enzymol 12B, 195–206. [Google Scholar]
  14. Marmur, J.(1961). A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3, 208–218.[CrossRef] [Google Scholar]
  15. Nedashkovskaya, O. I., Kim, S. B., Suzuki, M., Shevchenko, L. S., Lee, M. S., Lee, K. H., Park, M. S., Frolova, G. M., Oh, H. W. & other authors(2005).Pontibacter actiniarum gen. nov., sp. nov., a novel member of the phylum ‘Bacteroidetes’, and proposal of Reichenbachiella gen. nov. as a replacement for the illegitimate prokaryotic generic name Reichenbachia Nedashkovskaya et al. 2003. Int J Syst Evol Microbiol 55, 2583–2588.[CrossRef] [Google Scholar]
  16. Palleroni, N. J., Port, A. M., Chang, H.-K. & Zylstra, G. J.(2004).Hydrocarboniphaga effusa gen. nov., sp. nov., a novel member of the γ-Proteobacteria active in alkane and aromatic hydrocarbon degradation. Int J Syst Evol Microbiol 54, 1203–1207.[CrossRef] [Google Scholar]
  17. Petit, V., Cabridenc, R., Swannell, R. P. J. & Sokhi, R.-S.(1995). Review of strategies for modelling the environmental fate of pesticides discharged into riverine systems. Environ Int 21, 167–176.[CrossRef] [Google Scholar]
  18. Rosenberg, E.(1992). The hydrocarbon-oxidizing bacteria. In The Prokaryotes, 2nd edn, pp. 446–459. Edited by A. Balows, H. G. Trüper, M. Dworkin, W. Harder & K.-H. Schleifer. New York: Springer.
  19. Saitou, N. & Nei, M.(1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425. [Google Scholar]
  20. Sasser, M.(1990). Identification of bacteria by gas chromatography of cellular fatty acids. USFCC Newsl 20, 16 [Google Scholar]
  21. Stürmeyer, H., Overmann, J., Babenzien, H.-D. & Cypionka, H.(1998). Ecophysiological and phylogenetic studies of Nevskia ramosa in pure culture. Appl Environ Microbiol 64, 1890–1894. [Google Scholar]
  22. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G.(1997). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25, 4876–4888.[CrossRef] [Google Scholar]
  23. Yamaguchi, S. & Yokoe, M.(2000). A novel protein-deamidating enzyme from Chryseobacterium proteolyticum sp. nov., a newly isolated bacterium from soil. Appl Environ Microbiol 66, 3337–3343.[CrossRef] [Google Scholar]
  24. Zhou, Y., Dong, J., Wang, X., Huang, X., Zhang, K.-Y., Zhang, Y.-Q., Guo, Y.-F., Lai, R. & Li, W.-J.(2007a).Chryseobacterium flavum sp. nov., isolated from a polluted soil. Int J Syst Evol Microbiol 57, 1765–1769.[CrossRef] [Google Scholar]
  25. Zhou, Y., Wang, X., Liu, H., Zhang, K.-Y., Zhang, Y.-Q., Lai, R. & Li, W.-J.(2007b).Pontibacter akesuensis sp. nov., isolated from a desert soil in China. Int J Syst Evol Microbiol 57, 321–325.[CrossRef] [Google Scholar]
  26. Zwillich, T.(2000). Hazardous waste cleanup. A tentative comeback for bioremediation. Science 289, 2266–2267.[CrossRef] [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.65244-0
Loading
/content/journal/ijsem/10.1099/ijs.0.65244-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error