1887

Abstract

The bacterial strain Gp_4_7.1, isolated from the marine sponge collected at the Sula Ridge off the Norwegian coast, was characterized. The isolate was a motile spirillum that was monopolarly and monotrichously flagellated. It was aerobic, Gram-negative, oxidase-positive and catalase-negative. Optimal growth occurred between 20 and 30 °C, at pH 7–8 and with a salt concentration of 2–3 % (w/v). The isolate showed a relatively restricted nutritional profile. Substrate utilization tests were only positive for arabinose. Enzyme tests were positive for esterase lipase C8, lipase C14, leucine arylamidase and naphthol-AS-BI-phosphohydrolase. The strain was not able to reduce nitrate. The major cellular fatty acids were C 7 and C. The DNA G+C content was 62.6 mol%. Phylogenetic analysis based on 16S rRNA gene sequence comparison classified the strain as a member of the order in the class . Strain Gp_4_7.1 formed a distinct phyletic line with less than 94 % 16S rRNA gene sequence similarity to its closest relatives with validly published names. Based on the determined data, it is proposed that the strain represents a novel species in a new genus, gen. nov., sp. nov.; the type strain of is Gp_4_7.1 (=DSM 17749 =NCIMB 14401).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.65439-0
2008-08-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/58/8/1815.html?itemId=/content/journal/ijsem/10.1099/ijs.0.65439-0&mimeType=html&fmt=ahah

References

  1. Althoff, K., Schütt, C., Steffen, R., Batel, R. & Müller, W. E. G.(1998). Evidence for a symbiosis between bacteria of the genus Rhodobacter and the marine sponge Halichondria panicea: harbor also for putatively toxic bacteria? Mar Biol 130, 529–536.[CrossRef] [Google Scholar]
  2. Bano, N. & Hollibaugh, J. T.(2002). Phylogenetic composition of bacterioplankton assemblages from the Arctic Ocean. Appl Environ Microbiol 68, 505–518.[CrossRef] [Google Scholar]
  3. Brinkmeyer, R., Knittel, K., Jürgens, J., Weyland, H., Amann, R. & Helmke, E.(2003). Diversity and structure of bacterial communities in Arctic versus Antarctic pack ice. Appl Environ Microbiol 69, 6610–6619.[CrossRef] [Google Scholar]
  4. Buser, H. R., Arn, H., Guerin, P. & Rauscher, S.(1983). Determination of double bond position in mono-unsaturated acetates by mass spectrometry of dimethyl disulfide adducts. Anal Chem 55, 818–822.[CrossRef] [Google Scholar]
  5. Dieckmann, R., Graeber, I., Kaesler, I., Szewzyk, U. & von Döhren, H.(2005). Rapid screening and dereplication of bacterial isolates from marine sponges of the Sula Ridge by Intact-Cell-MALDI-TOF mass spectrometry (ICM-MS). Appl Microbiol Biotechnol 67, 539–548.[CrossRef] [Google Scholar]
  6. Fieseler, L., Horn, M., Wagner, M. & Hentschel, U.(2004). Discovery of the novel candidate phylum “Poribacteria” in marine sponges. Appl Environ Microbiol 70, 3724–3732.[CrossRef] [Google Scholar]
  7. Fieseler, L., Quaiser, A., Schleper, C. & Hentschel, U.(2006). Analysis of the first genome fragment from the marine sponge-associated, novel candidate phylum Poribacteria by environmental genomics. Environ Microbiol 8, 612–624.[CrossRef] [Google Scholar]
  8. Green, D. H., Llewellyn, L. E., Negri, A. P., Blackburn, S. I. & Bolch, C. J. S.(2004). Phylogenetic and functional diversity of the cultivable bacterial community associated with the paralytic shellfish poisoning dinoflagellate Gymnodinium catenatum. FEMS Microbiol Ecol 47, 345–357.[CrossRef] [Google Scholar]
  9. Hentschel, U., Schmid, M., Wagner, M., Fieseler, L., Gernert, C. & Hacker, J.(2001). Isolation and phylogenetic analysis of bacteria with antimicrobial activities from the Mediterranean sponges Aplysina aerophoba and Aplysina cavernicola. FEMS Microbiol Ecol 35, 305–312.[CrossRef] [Google Scholar]
  10. Hentschel, U., Hopke, J., Horn, M., Friedrich, A. B., Wagner, M., Hacker, J. & Moore, B. S.(2002). Molecular evidence for a uniform microbial community in sponges from different oceans. Appl Environ Microbiol 68, 4431–4440.[CrossRef] [Google Scholar]
  11. Hoffmann, F., Larsen, O., Thiel, V., Rapp, H. T., Pape, T., Michaelis, W. & Reitner, J.(2005). An anaerobic world in sponges. Geomicrobiol J 22, 1–10.[CrossRef] [Google Scholar]
  12. Hoffmann, F., Rapp, H. T. & Reitner, J.(2006). Monitoring microbial community composition by fluorescence in situ hybridization during cultivation of the marine cold-water sponge Geodia barretti. Mar Biotechnol 8, 373–379.[CrossRef] [Google Scholar]
  13. Lafi, F. F., Garson, M. J. & Fuerst, J. A.(2005). Culturable bacterial symbionts isolated from two distinct sponge species (Pseudoceratina clavata and Rhabdastrella globostellata) from the Great Barrier Reef display similar phylogenetic diversity. Microb Ecol 50, 213–220.[CrossRef] [Google Scholar]
  14. Li, Z. Y. & Liu, Y.(2006). Marine sponge Craniella austrialiensis-associated bacterial diversity revelation based on 16S rDNA library and biologically active Actinomycetes screening, phylogenetic analysis. Lett Appl Microbiol 43, 410–416.[CrossRef] [Google Scholar]
  15. Li, Z.-Y., He, L.-M., Wu, H. & Jiang, Q.(2006). Bacterial community diversity associated with four marine sponges from the South China Sea based on 16S rDNA-DGGE fingerprinting. J Exp Mar Biol Ecol 329, 75–85.[CrossRef] [Google Scholar]
  16. Ludwig, W., Strunk, O., Westram, R., Richter, L., Meier, H., Yadhukumar, Buchner, A., Lai, T., Steppi, S. & other authors(2004).arb: a software environment for sequence data. Nucleic Acids Res 32, 1363–1371.[CrossRef] [Google Scholar]
  17. Lyman, J. & Fleming, R. H.(1940). Composition of sea water. J Mar Res 3, 134–146. [Google Scholar]
  18. Mesbah, M., Premachandran, U. & Whitman, W. B.(1989). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39, 159–167.[CrossRef] [Google Scholar]
  19. Olson, J. B. & McCarthy, P. J.(2005). Associated bacterial communities of two deep-water sponges. Aquat Microb Ecol 39, 47–55.[CrossRef] [Google Scholar]
  20. Pape, T., Hoffmann, F., Queric, N. V., von Juterzenka, K., Reitner, J. & Michaelis, W.(2006). Dense populations of Archaea associated with the demosponge Tentorium semisuberites Schmidt, 1870 from Arctic deep-waters. Polar Biol 29, 662–667.[CrossRef] [Google Scholar]
  21. Piel, J., Butzke, D., Fusetani, N., Hui, D. Q., Platzer, M., Wen, G. P. & Matsunaga, S.(2005). Exploring the chemistry of uncultivated bacterial symbionts: antitumor polyketides of the pederin family. J Nat Prod 68, 472–479.[CrossRef] [Google Scholar]
  22. Pinhassi, J. & Berman, T.(2003). Differential growth response of colony-forming α- and γ-proteobacteria in dilution culture and nutrient addition experiments from Lake Kinneret (Israel), the Eastern Mediterranean Sea, and the Gulf of Eilat. Appl Environ Microbiol 69, 199–211.[CrossRef] [Google Scholar]
  23. Prabagaran, S. R., Manorama, R., Delille, D. & Shivaji, S.(2007). Predominance of Roseobacter, Sulfitobacter, Glaciecola and Psychrobacter in seawater collected off Ushuaia, Argentina, Sub-Antarctica. FEMS Microbiol Ecol 59, 342–355. [Google Scholar]
  24. Schirmer, A., Gadkari, R., Reeves, C. D., Ibrahim, F., DeLong, E. F. & Hutchinson, C. R.(2005). Metagenomic analysis reveals diverse polyketide synthase gene clusters in microorganisms associated with the marine sponge Discodermia dissoluta. Appl Environ Microbiol 71, 4840–4849.[CrossRef] [Google Scholar]
  25. Sfanos, K., Harmody, D., Dang, P., Ledger, A., Pomponi, S., McCarthy, P. & Lopez, J.(2005). A molecular systematic survey of cultured microbial associates of deep-water marine invertebrates. Syst Appl Microbiol 28, 242–264.[CrossRef] [Google Scholar]
  26. Spurr, A. R.(1969). A low-viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res 26, 31–43.[CrossRef] [Google Scholar]
  27. Steven, A. C., Trus, B. L., Maizel, J. V., Unser, M., Parry, D. A. D., Wall, J. S., Hainfeld, J. F. & Studier, F. W.(1988). Molecular substructure of a viral receptor-recognition protein. The gp17 tail-fiber of bacteriophage T7. J Mol Biol 200, 351–365.[CrossRef] [Google Scholar]
  28. Taylor, M. W., Schupp, P. J., Dahllöf, I., Kjelleberg, S. & Steinberg, P. D.(2004). Host specificity in marine sponge-associated bacteria, and potential implications for marine microbial diversity. Environ Microbiol 6, 121–130. [Google Scholar]
  29. Taylor, M. W., Radax, R., Steger, D. & Wagner, M.(2007). Sponge-associated microorganisms: evolution, ecology, and biotechnological potential. Microbiol Mol Biol Rev 71, 295–347.[CrossRef] [Google Scholar]
  30. Thiel, V., Blumenberg, M., Hefter, J., Pape, T., Pomponi, S., Reed, J., Reitner, J., Wörheide, G. & Michaelis, W.(2002). A chemical view of the most ancient metazoa – biomarker chemotaxonomy of hexactinellid sponges. Naturwissenschaften 89, 60–66.[CrossRef] [Google Scholar]
  31. Thiel, V., Neulinger, S. C., Staufenberger, T., Schmaljohann, R. & Imhoff, J. F.(2007). Spatial distribution of sponge-associated bacteria in the Mediterranean sponge Tethya aurantium. FEMS Microbiol Ecol 59, 47–63.[CrossRef] [Google Scholar]
  32. Thoms, C., Horn, M., Wagner, M., Hentschel, U. & Proksch, P.(2003). Monitoring microbial diversity and natural product profiles of the sponge Aplysina cavernicola following transplantation. Mar Biol 142, 685–692. [Google Scholar]
  33. Webster, N. S., Wilson, K. J., Blackall, L. L. & Hill, R. T.(2001). Phylogenetic diversity of bacteria associated with the marine sponge Rhopaloeides odorabile. Appl Environ Microbiol 67, 434–444.[CrossRef] [Google Scholar]
  34. Webster, N. S., Negri, A. P., Munro, M. M. H. G. & Battershill, C. N.(2004). Diverse microbial communities inhabit Antarctic sponges. Environ Microbiol 6, 288–300.[CrossRef] [Google Scholar]
  35. Wichels, A., Würtz, S., Döpke, H., Schütt, C. & Gerdts, G.(2006). Bacterial diversity in the breadcrumb sponge Halichondria panicea (Pallas). FEMS Microbiol Ecol 56, 102–118.[CrossRef] [Google Scholar]
  36. Yakimov, M. M., Giuliano, L., Gentile, G., Crisafi, E., Chernikova, T. N., Abraham, W. R., Lünsdorf, H., Timmis, K. N. & Golyshin, P. N.(2003).Oleispira antarctica gen. nov., sp. nov., a novel hydrocarbonoclastic marine bacterium isolated from Antarctic coastal sea water. Int J Syst Evol Microbiol 53, 779–785.[CrossRef] [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.65439-0
Loading
/content/journal/ijsem/10.1099/ijs.0.65439-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error