1887

Abstract

A taxonomic study was performed on 15 bacterial isolates from the caeca of gnotobiotic mice that had been fed with thermophile-fermented compost. The 15 isolates were thermophilic, Gram-stain-positive, facultatively anaerobic, endospore-forming bacteria, and were most closely related to CNCM I-1378. The 16S rRNA gene sequence of strain N-11, selected as representative of this new group, showed a similarity of 99.4 % with CNCM I-1378, 94.7 % with R-6488, and 94.4 % with MO-04. The isolates were then classified into two distinct groups based on a (GTG)-fingerprint analysis. Two isolates, N-11 and N-21, were the representatives of these two groups, respectively.` The N-11 and N-21 isolates showed 66–71 % DNA–DNA relatedness with one other, but had less than 37 % DNA–DNA relatedness with LMG 18084. The other 13 isolates showed DNA–DNA relatedness values above 74 % with the N-11 isolate. All 15 isolates grew at 25–60 °C (optimum 50 °C), pH 6–8 (optimum pH 7) and were capable of growing on a medium containing 6 % (w/v) NaCl (optimum 0.5 %). The 15 isolates could be distinguished from LMG 18084 because they showed Tween 80 hydrolysis activity and did not produce acid from melibiose. The major fatty acids were anteiso-C, C, iso-C, iso-C and iso-C. The major polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol and several unidentified phospholipids. The diagnostic diamino acid in the cell-wall peptidoglycan was -diaminopimelic acid. The menaquinone was MK-7. The DNA G+C content was 37.9 mol%. Based on the phenotypic properties, the 15 strains represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is N-11 ( = NRBC 110226 = LMG 28201).

Funding
This study was supported by the:
  • Ministry of Economy, Trade and Industry
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000516
2015-11-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/11/3944.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000516&mimeType=html&fmt=ahah

References

  1. Bartholomew J. W., Mittwer T. ( 1950;). A simplified bacterial spore stain. Stain Technol 25 153156 [PubMed].
    [Google Scholar]
  2. Colenutt C., Cutting S. M. ( 2014;). Use of Bacillus subtilis PXN21 spores for suppression of Clostridium difficile infection symptoms in a murine model. FEMS Microbiol Lett 358 154161 [View Article] [PubMed].
    [Google Scholar]
  3. Combet-Blanc Y., Ollivier B., Streicher C., Patel B. K. C., Dwivedi P. P., Pot B., Prensier G., Garcia J. L. ( 1995;). Bacillus thermoamylovorans sp. nov., a moderately thermophilic and amylolytic bacterium. Int J Syst Bacteriol 45 916 [View Article] [PubMed].
    [Google Scholar]
  4. Coorevits A., Logan N. A., Dinsdale A. E., Halket G., Scheldeman P., Heyndrickx M., Schumann P., Van Landschoot A., De Vos P. ( 2011;). Bacillus thermolactis sp. nov., isolated from dairy farms, and emended description of Bacillus thermoamylovorans . Int J Syst Evol Microbiol 61 19541961 [View Article] [PubMed].
    [Google Scholar]
  5. Dye D. W. ( 1962;). The inadequacy of the usual determinative tests for the identification of Xanthomonas spp. N Z J Sci 5 393416.
    [Google Scholar]
  6. Ezaki T., Hashimoto Y., Yabuuchi E. ( 1989;). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39 224229 [View Article].
    [Google Scholar]
  7. Gevers D., Huys G., Swings J. ( 2001;). Applicability of rep-PCR fingerprinting for identification of Lactobacillus species. FEMS Microbiol Lett 205 3136 [View Article] [PubMed].
    [Google Scholar]
  8. Harper J. J., Davis G. H. G. ( 1979;). Two-dimensional thin-layer chromatography for amino acid analysis of bacterial cell walls. Int J Syst Bacteriol 29 5658 [View Article].
    [Google Scholar]
  9. Henriques A. O., Moran C. P. Jr ( 2007;). Structure, assembly, and function of the spore surface layers. Annu Rev Microbiol 61 555588 [View Article] [PubMed].
    [Google Scholar]
  10. Ichinose S., Tagami M., Muneta T., Mukohyama H., Sekiya I. ( 2013;). Comparative sequential morphological analyses during in vitro chondrogenesis and osteogenesis of mesenchymal stem cells embedded in collagen gels. Med Mol Morphol 46 2433 [View Article] [PubMed].
    [Google Scholar]
  11. Ishii K., Fukui M., Takii S. ( 2000;). Microbial succession during a composting process as evaluated by denaturing gradient gel electrophoresis analysis. J Appl Microbiol 89 768777 [View Article] [PubMed].
    [Google Scholar]
  12. Jeong J. S., Kim I. H. ( 2014;). Effect of Bacillus subtilis C-3102 spores as a probiotic feed supplement on growth performance, noxious gas emission, and intestinal microflora in broilers. Poult Sci 93 30973103 [View Article] [PubMed].
    [Google Scholar]
  13. Kämpfer P. ( 1994;). Limits and possibilities of total fatty acid analysis for classification and identification of Bacillus species. Syst Appl Microbiol 17 8698 [View Article] [PubMed].
    [Google Scholar]
  14. Katayama-Fujimura Y., Komatsu Y., Kuraishi H., Kaneko T. ( 1984;). Estimation of DNA base composition by high-performance liquid chromatography of its nuclease P1 hydorlysate. Agric Biol Chem 48 31693172 [View Article].
    [Google Scholar]
  15. Komagata K., Suzuki K. ( 1987;). Lipids and cell-wall analysis in bacterial systematics. Methods Microbiol 19 161207 [View Article].
    [Google Scholar]
  16. Logan N. A., de Vos O. ( 2009;). Genus I. Bacillus . . In Bergey's Manual of Systematic Bacteriology, pp. 21128. Edited by de Vos P., Garrity G., Jones D., Krieg N. R., Ludwig W., Rainey F. A., Schleifer K. H., Whitman W. B. vol. 3 New York: Springer;.
    [Google Scholar]
  17. Logan N. A., Berge O., Bishop A. H., Busse H. J., De Vos P., Fritze D., Heyndrickx M., Kämpfer P., Rabinovitch L., other authors. ( 2009;). Proposed minimal standards for describing new taxa of aerobic, endospore-forming bacteria. Int J Syst Evol Microbiol 59 21142121 [View Article] [PubMed].
    [Google Scholar]
  18. Miyamoto H., Kodama H., Udagawa M., Mori K., Matsumoto J., Oosaki H., Oosaki T., Ishizeki M., Ishizeki D., other authors. ( 2012;). The oral administration of thermophile-fermented compost extract and its influence on stillbirths and growth rate of pre-weaning piglets. Res Vet Sci 93 137142 [View Article] [PubMed].
    [Google Scholar]
  19. Miyamoto H., Seta M., Horiuchi S., Iwasawa Y., Naito T., Nishida A., Miyamoto H., Matsushita T., Itoh K., Kodama H. ( 2013;). Potential probiotic thermophiles isolated from mice after compost ingestion. J Appl Microbiol 114 11471157 [View Article] [PubMed].
    [Google Scholar]
  20. Niisawa C., Oka S., Kodama H., Hirai M., Kumagai Y., Mori K., Matsumoto J., Miyamoto H., Miyamoto H. ( 2008;). Microbial analysis of a composted product of marine animal resources and isolation of bacteria antagonistic to a plant pathogen from the compost. J Gen Appl Microbiol 54 149158 [View Article] [PubMed].
    [Google Scholar]
  21. Partanen P., Hultman J., Paulin L., Auvinen P., Romantschuk M. ( 2010;). Bacterial diversity at different stages of the composting process. BMC Microbiol 10 94 [View Article] [PubMed].
    [Google Scholar]
  22. Pearson W. R., Lipman D. J. ( 1988;). Improved tools for biological sequence comparison. Proc Natl Acad Sci U S A 85 24442448 [View Article] [PubMed].
    [Google Scholar]
  23. Poudel P., Miyamoto H., Miyamoto H., Okugawa Y., Tashiro Y., Sakai K. ( 2014;). Thermotolerant Bacillus kokeshiiformis sp. nov. isolated from marine animal resources compost. Int J Syst Evol Microbiol 64 26682674 [View Article] [PubMed].
    [Google Scholar]
  24. Ryckeboer J., Mergaert J., Vaes K., Klammer S., De Clercq D., Coosemans J., Insam H., Swings J. ( 2003;). A survey of bacteria and fungi occurring during composting and self-heating processes. Ann Microbiol 53 349410.
    [Google Scholar]
  25. Saitou N., Nei M. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4 406425 [PubMed].
    [Google Scholar]
  26. Schleifer K. H., Kandler O. ( 1972;). Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36 407477 [PubMed].
    [Google Scholar]
  27. Slifkin M. ( 2000;). Tween 80 opacity test responses of various Candida species. J Clin Microbiol 38 46264628 [PubMed].
    [Google Scholar]
  28. Tanaka R., Miyamoto H., Kodama H., Kawachi N., Udagawa M., Miyamoto H., Matsushita T. ( 2010;). Feed additives with thermophile-fermented compost enhance concentrations of free amino acids in the muscle of the flatfish Paralichthys olivaceus . J Gen Appl Microbiol 56 6165 [View Article] [PubMed].
    [Google Scholar]
  29. Ventosa A., Quesada E., Rodriguez-Valera F., Ruiz-Berraquero F., Ramos-Cormenzana A. ( 1982;). Numerical taxonomy of moderately halophilic Gram-negative rods. J Gen Microbiol 128 19591968.
    [Google Scholar]
  30. Wang L. T., Lee F. L., Tai C. J., Kasai H. ( 2007;). Comparison of gyrB gene sequences, 16S rRNA gene sequences and DNA-DNA hybridization in the Bacillus subtilis group. Int J Syst Evol Microbiol 57 18461850 [View Article] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000516
Loading
/content/journal/ijsem/10.1099/ijsem.0.000516
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error