1887

Abstract

A Gram-stain-negative, non-motile, rod-shaped, aerobic bacterium, designated strain YLT18, was isolated from mountain cliff soil of Enshi Grand Canyon in China. The major menaquinone was menaquinone 7 (MK-7) and the predominant fatty acids (>5 %) were iso-C, Cω5, iso-C 3-OH, summed feature 3 (Cω7/iso-C 2-OH) and iso-C 3-OH. The major polar lipids were phosphatidylethanolamine, two unknown aminophospholipids, two unknown aminolipids and two unknown polar lipids. The DNA G+C content was 55.4 mol%. According to phylogenetic analysis based on 16S rRNA gene sequences, strain YLT18 was related most closely to JS13-10 ( = DSM 24787) and R156-2 ( = KCTC 23738), with similarities of 96.7 and 96.2 %, respectively. In addition, strain YLT18 showed obvious differences from the closely related species in terms of esterase (C4) activity, acid production from fructose and rhamnose, and sole carbon source utilization by arabinose and rhamnose. The results from this polyphasic taxonomic study revealed that strain YLT18 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is YLT18 ( = KCTC 42472 = CCTCC AB 2015054).

Funding
This study was supported by the:
  • National Natural Science Foundation of China (Award 31470227)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000566
2015-11-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/11/4233.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000566&mimeType=html&fmt=ahah

References

  1. Breznak J.A., Costilow R.N. ( 1994;). Physicochemical factors in growth. . In Methods for General and Molecular Bacteriology, pp. 137154. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;.
    [Google Scholar]
  2. Cappuccino J.G., Sherman N. ( 2002). Microbiology: a Laboratory Manual, 6th edn., Menlo Park, CA: Benjamin/Cummings;.
    [Google Scholar]
  3. Chen F., Shi Z., Wang G. ( 2012;). Arenimonas metalli sp. nov., isolated from an iron mine. Int J Syst Evol Microbiol 62 17441749 [View Article] [PubMed].
    [Google Scholar]
  4. Chung E.J., Park T.S., Jeon C.O., Chung Y.R. ( 2012;). Chitinophaga oryziterrae sp. nov., isolated from the rhizosphere soil of rice (Oryza sativa L.). Int J Syst Evol Microbiol 62 30303035 [View Article] [PubMed].
    [Google Scholar]
  5. Collins M.D., Jones D. ( 1980;). Lipids in the classification and identification of coryneform bacteria containing peptidoglycans based on 2,4-diaminobutyric acid. J Appl Bacteriol 48 459470 [View Article].
    [Google Scholar]
  6. Cowan S.T., Steel K.J. ( 1965). Manual for the Identification of Medical Bacteria., London: Cambridge University Press;.
    [Google Scholar]
  7. Dong X.-Z., Cai M.-Y. ( 2001). Determinative Manual for Routine Bacteriology., Beijing: Science Press (in Chinese);.
    [Google Scholar]
  8. Dussault H.P. ( 1955;). An improved technique for staining red halophilic bacteria. J Bacteriol 70 484485 [PubMed].
    [Google Scholar]
  9. Fan H., Su C., Wang Y., Yao J., Zhao K., Wang Y., Wang G. ( 2008;). Sedimentary arsenite-oxidizing and arsenate-reducing bacteria associated with high arsenic groundwater from Shanyin, Northwestern China. J Appl Microbiol 105 529539 [View Article] [PubMed].
    [Google Scholar]
  10. Fitch W.M. ( 1971;). Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20 406416 [View Article].
    [Google Scholar]
  11. Han S.I., Lee H.J., Whang K.S. ( 2014;). Chitinophaga polysaccharea sp. nov., an exopolysaccharide-producing bacterium isolated from the rhizoplane of Dioscorea japonica . Int J Syst Evol Microbiol 64 5559 [View Article] [PubMed].
    [Google Scholar]
  12. Hugh R., Leifson E. ( 1953;). The taxonomic significance of fermentative versus oxidative metabolism of carbohydrates by various gram negative bacteria. J Bacteriol 66 2426 [PubMed].
    [Google Scholar]
  13. Kämpfer P., Young C.C., Sridhar K.R., Arun A.B., Lai W.A., Shen F.T., Rekha P.D. ( 2006;). Transfer of [Flexibacter] sancti, [Flexibacter] filiformis, [Flexibacter] japonensis and [Cytophaga] arvensicola to the genus Chitinophaga and description of Chitinophaga skermanii sp. nov. Int J Syst Evol Microbiol 56 22232228 [View Article] [PubMed].
    [Google Scholar]
  14. Kämpfer P., Lodders N., Falsen E. ( 2011;). Hydrotalea flava gen. nov., sp. nov., a new member of the phylum Bacteroidetes and allocation of the genera Chitinophaga, Sediminibacterium, Lacibacter, Flavihumibacter, Flavisolibacter, Niabella, Niastella, Segetibacter, Parasegetibacter, Terrimonas, Ferruginibacter, Filimonas and Hydrotalea to the family Chitinophagaceae fam. nov. Int J Syst Evol Microbiol 61 518523 [View Article] [PubMed].
    [Google Scholar]
  15. Kim M.K., Jung H.Y. ( 2007;). Chitinophaga terrae sp. nov., isolated from soil. Int J Syst Evol Microbiol 57 17211724 [View Article] [PubMed].
    [Google Scholar]
  16. Kim O.S., Cho Y.J., Lee K., Yoon S.H., Kim M., Na H., Park S.C., Jeon Y.S., Lee J.H., other authors. ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62 716721 [View Article] [PubMed].
    [Google Scholar]
  17. Lányí B. ( 1987;). Classical and rapid identification methods for medically important bacteria. Methods Microbiol 19 167 [View Article].
    [Google Scholar]
  18. Lee H.G., An D.S., Im W.T., Liu Q.M., Na J.R., Cho D.H., Jin C.W., Lee S.T., Yang D.C. ( 2007;). Chitinophaga ginsengisegetis sp. nov. and Chitinophaga ginsengisoli sp. nov., isolated from soil of a ginseng field in South Korea. Int J Syst Evol Microbiol 57 13961401 [View Article] [PubMed].
    [Google Scholar]
  19. Lee D.W., Lee J.E., Lee S.D. ( 2009;). Chitinophaga rupis sp. nov., isolated from soil. Int J Syst Evol Microbiol 59 28302833 [View Article] [PubMed].
    [Google Scholar]
  20. Li L., Sun L., Shi N., Liu L., Guo H., Xu A., Zhang X., Yao N. ( 2013;). Chitinophaga cymbidii sp. nov., isolated from Cymbidium goeringii roots. Int J Syst Evol Microbiol 63 18001804 [View Article] [PubMed].
    [Google Scholar]
  21. Mesbah M., Premachandran U., Whitman W.B. ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high performance liquid chromatography. Int J Syst Bacteriol 39 159167 [View Article].
    [Google Scholar]
  22. Minnikin D.E., O'Donnell A.G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J.H. ( 1984;). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2 233241 [View Article].
    [Google Scholar]
  23. Proença D.N., Nobre M.F., Morais P.V. ( 2014;). Chitinophaga costaii sp. nov., an endophyte of Pinus pinaster, and emended description of Chitinophaga niabensis . Int J Syst Evol Microbiol 64 12371243 [View Article] [PubMed].
    [Google Scholar]
  24. Saitou N., Nei M. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4 406425 [PubMed].
    [Google Scholar]
  25. Sangkhobol V., Skerman V.B.D. ( 1981;). Chitinophaga, a new genus of chitinolytic myxobacteria. Int J Syst Bacteriol 31 285293 [View Article].
    [Google Scholar]
  26. Sasser M. ( 1990). Identification of bacteria by gas chromatography of cellular fatty acids MIDI Technical Note 101 Newark, DE: MIDI Inc;.
    [Google Scholar]
  27. Smibert R.M., Krieg N.R. ( 1994;). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607654. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;.
    [Google Scholar]
  28. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28 27312739 [View Article] [PubMed].
    [Google Scholar]
  29. Thompson J.D., Gibson T.J., Plewniak F., Jeanmougin F., Higgins D.G. ( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25 48764882 [View Article] [PubMed].
    [Google Scholar]
  30. Wang Q., Cheng C., He L.Y., Huang Z., Sheng X.F. ( 2014;). Chitinophaga jiangningensis sp. nov., a mineral-weathering bacterium. Int J Syst Evol Microbiol 64 260265 [View Article] [PubMed].
    [Google Scholar]
  31. Weon H.Y., Yoo S.H., Kim Y.J., Son J.A., Kim B.Y., Kwon S.W., Koo B.S. ( 2009;). Chitinophaga niabensis sp. nov. and Chitinophaga niastensis sp. nov., isolated from soil. Int J Syst Evol Microbiol 59 12671271 [View Article] [PubMed].
    [Google Scholar]
  32. Wilson K.H., Blitchington R.B., Greene R.C. ( 1990;). Amplification of bacterial 16S ribosomal DNA with polymerase chain reaction. J Clin Microbiol 28 19421946 [PubMed].
    [Google Scholar]
  33. Yasir M., Chung E.J., Song G.C., Bibi F., Jeon C.O., Chung Y.R. ( 2011;). Chitinophaga eiseniae sp. nov., isolated from vermicompost. Int J Syst Evol Microbiol 61 23732378 [View Article] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000566
Loading
/content/journal/ijsem/10.1099/ijsem.0.000566
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error