1887

Abstract

Twenty-three rod-shaped, endospore-forming, Gram-stain-positive, obligately anaerobic bacteria were isolated from different marine sediment samples of Gujarat. All 23 strains shared 16S rRNA gene sequence similarity of ∼100 %. Strain JC272 was designated the type strain and shared highest sequence similarity with ATCC 638 (99.8 %), JCM 1400 (98.0 %), ATCC 9714 (97.9 %) and other members of the genus ( < 96.4 %). C, C, C, Cω9 and iso-C were the major (>5 %) fatty acids. Strain JC272 contained diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine and two unidentified amino lipids. Genome-based analysis of average nucleotide identity (ANI) and DNA–DNA hybridization (DDH) of strain JC272 with ATCC 638 yielded values of 94.35 and 58.5 ± 2.8 %, respectively. The DNA G+C content of strain JC272 was 28.3 mol%. Strain JC272 together with were found to fall outside rRNA cluster I considered as . Based on ANI value, DDH, and distinct morphological and physiological differences from the previously described taxa, we suggest that strain JC272 represents a novel species of a new genus in the family , for which the name gen. nov., sp. nov. is proposed. The type strain is JC272 ( = KCTC 15476 = LMG 28745). It is also proposed to transfer to this new genus, as comb. nov. (type strain ATCC 638 = DSM 14991 = JCM 1386). The genus gen. nov. is proposed to accommodate and as comb. nov. (type strain ATCC 9714 = LMG 15708 = JCM 3814) and comb. nov. (type strain ATCC 25757 = DSM 15049 = JCM 1400).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000874
2016-03-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/3/1268.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000874&mimeType=html&fmt=ahah

References

  1. Aldape M. J., Bryant A. E., Stevens D. L. 2006; Clostridium sordellii infection: epidemiology, clinical findings, and current perspectives on diagnosis and treatment. Clin Infect Dis 43:1436–1446 [View Article][PubMed]
    [Google Scholar]
  2. Auch A. F., von Jan M., Klenk H. P., Göker M. 2010; Digital DNA–DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2:117–134 [View Article][PubMed]
    [Google Scholar]
  3. Barber J. M., Robb F. T., Webster J. R., Woods D. R. 1979; Bacteriocin production by Clostridium acetobutylicum in an industrial fermentation process. Appl Environ Microbiol 37:433–437[PubMed]
    [Google Scholar]
  4. Bergey D. H., Harrison F. C., Breed R. S., Hammer B. W., Huntoon F. M. 1923 Bergey's Manual of Determinative Bacteriology Baltimore: Williams & Wilkins;
    [Google Scholar]
  5. Brooks J. B., Moss C. W., Dowell V. R. 1969; Differentiation between Clostridium sordellii and Clostridium bifermentans by gas chromatography. J Bacteriol 100:528–530[PubMed]
    [Google Scholar]
  6. Cappuccino J. G., Sherman N. 1999 Microbiology: A Laboratory Manual, 5th edn. Menlo Park, CA: Benjamin/Cummings;
    [Google Scholar]
  7. Gebhart D., Williams S. R., Bishop-Lilly K. A., Govoni G. R., Willner K. M., Butani A., Sozhamannan S., Martin D., Fortier L. C., Scholl D. 2012; Novel high-molecular-weight, R-type bacteriocins of Clostridium difficile . J Bacteriol 194:6240–6247 [View Article][PubMed]
    [Google Scholar]
  8. Gerritsen J., Fuentes S., Grievink W., van Niftrik L., Tindall B. J., Timmerman H. M., Rijkers G. T., Smidt H. 2014; Characterization of Romboutsia ilealis gen. nov., sp. nov., isolated from the gastro-intestinal tract of a rat, and proposal for the reclassification of five closely related members of the genus Clostridium into the genera Romboutsia gen. nov., Intestinibacter gen. nov., Terrisporobacter gen. nov. and Asaccharospora gen. nov. Int J Syst Evol Microbiol 64:1600–1616[PubMed] [CrossRef]
    [Google Scholar]
  9. Goris J., Konstantinidis K. T., Klappenbach J. A., Coenye T., Vandamme P., Tiedje J. M. 2007; DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 57:81–91[PubMed] [CrossRef]
    [Google Scholar]
  10. Gupta R. S., Gao B. 2009; Phylogenomic analyses of clostridia and identification of novel protein signatures that are specific to the genus Clostridium sensu stricto (cluster I). Int J Syst Evol Microbiol 59:285–294 [View Article][PubMed]
    [Google Scholar]
  11. Hall I. C., Scott J. P. 1927; Bacillus sordellii, a cause of malignant edema in man. J Infect Dis 41:329–355 [View Article]
    [Google Scholar]
  12. Kelner A. 1948; A method for investigating large microbial populations for antibiotic activity. J Bacteriol 56:157–162[PubMed]
    [Google Scholar]
  13. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H., other authors. 2012; Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721 [View Article][PubMed]
    [Google Scholar]
  14. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [View Article][PubMed]
    [Google Scholar]
  15. Lakshmi K.V.N.S., Sasikala Ch., Ashok Kumar G. V., Chandrasekaran R., Ramana Ch. V. 2011; Phaeovibrio sulfidiphilus gen. nov., sp. nov., phototrophic alphaproteobacteria isolated from brackish water. Int J Syst Evol Microbiol 61:828–833 [View Article][PubMed]
    [Google Scholar]
  16. Lawson P. A., Rainey F. A. 2015; Proposal to restrict the genus Clostridium (Prazmowski) to Clostridium butyricum and related species. Int J Syst Evol Microbiol in press [View Article][PubMed]
    [Google Scholar]
  17. Leja K., Myszka K., Czaczyk K. 2013; The ability of Clostridium bifermentans strains to lactic acid biosynthesis in various environmental conditions. Springerplus 2:44 [View Article][PubMed]
    [Google Scholar]
  18. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3:208–218 [View Article]
    [Google Scholar]
  19. Meier-Kolthoff J. P., Göker M., Spröer C., Klenk H. P. 2013; When should a DDH experiment be mandatory in microbial taxonomy?. Arch Microbiol 195:413–418 [View Article][PubMed]
    [Google Scholar]
  20. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [View Article]
    [Google Scholar]
  21. Myszka K., Leja K., Olejnik-Schmidt A. K., Czaczyk K. 2012; Isolation process of industrially useful Clostridium bifermentans from natural samples. J Biosci Bioeng 113:631–633 [View Article][PubMed]
    [Google Scholar]
  22. Nanjwade B. K., Chandrashekara S., Shamrez A. M., Goundanavar P. S., Manvi F. V. 2010; Isolation and morphological characterization of antibiotic producing actinomycetes. Trop J Pharm Res 9:231–236
    [Google Scholar]
  23. Nisida S., Tamai K., Yamagishi T. 1964; Taxonomy of Clostridium bifermentans and Clostridium sordellii . J Bacteriol 88:1641–1646[PubMed]
    [Google Scholar]
  24. Prévot A. R. 1938; Etudes de systematique bacterienne. IV. Critique de la conception actuelle du genre Clostridium . Ann Inst Pasteur (Paris) 61:72–91
    [Google Scholar]
  25. Rainey F. A., Hollen B. J., Small S. 2009; Genus I. Clostridium . In Bergey's Manual of Systematic Bacteriology vol. 3 pp 738–828Edited by De Vos P., Garrity G., Jones B., Krieg N. R., Wolfgang L., Rainey F. A., Schleifer K-H., Whitman W. New York: Springer;
    [Google Scholar]
  26. Shivani Y., Subhash Y., Tushar L., Sasikala Ch., Ramana Ch. V. 2015; Spirochaeta lutea sp. nov., isolated from marine habitats and emended description of the genus Spirochaeta . Syst Appl Microbiol 38:110–114 [View Article][PubMed]
    [Google Scholar]
  27. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 44:846–849 [View Article]
    [Google Scholar]
  28. Subhash Y., Tushar L., Sasikala Ch., Ramana Ch. V. 2013; Falsirhodobacter halotolerans gen. nov., sp. nov., isolated from dry soils of a solar saltern. Int J Syst Evol Microbiol 63:2132–2137 [View Article][PubMed]
    [Google Scholar]
  29. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S. 2013; mega6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729 [View Article][PubMed]
    [Google Scholar]
  30. Tourova T. P., Antonov A. S. 1988; Identification of microorganisms by rapid DNA-DNA hybridization. Methods Microbiol 19:333–355 [View Article]
    [Google Scholar]
  31. Tushar L., Sasikala Ch., Ramana Ch. V. 2014; Draft genome sequence of Rhodomicrobium udaipurense JA643T with special reference to hopanoid biosynthesis. DNA Res 21:639–647 [View Article][PubMed]
    [Google Scholar]
  32. Tushar L., Sasi Jyothsna T. S., Sasikala C., Ramana C. V. 2015; Draft genome sequence of antimicrobial-producing Clostridium sp. JC272, isolated from marine sediment. Genome Announc 3:e00650-15 [View Article][PubMed]
    [Google Scholar]
  33. Waksman S. A. 1945 Microbial Antagonisms and Antibiotic Substances New York: The Common Wealth Fund; [View Article]
    [Google Scholar]
  34. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E., other authors. 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [View Article]
    [Google Scholar]
  35. Weinberg M., Séguin P. 1918 La Gangrene Gazeuse-Bactériologie Reproduction Experimentale, Séreothérapie Paris: Masson and Co;
    [Google Scholar]
  36. Wong Y. M., Juan J. C., Gan H. M., Austin C. M. 2014; Draft genome sequence of Clostridium bifermentans strain WYM, a promising biohydrogen producer isolated from landfill leachate sludge. Genome Announc 2:e00077-14[PubMed] [CrossRef]
    [Google Scholar]
  37. Zhang Y., Mu J., Gu X., Zhao C., Wang X., Xie Z. 2009; A marine sulfate-reducing bacterium producing multiple antibiotics: biological and chemical investigation. Mar Drugs 7:341–354 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000874
Loading
/content/journal/ijsem/10.1099/ijsem.0.000874
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error