- Home
- Publications
- International Journal of Systematic and Evolutionary Microbiology
- Volume 66, Issue 6
- Article

f ‘Candidatus Tenderia electrophaga', an uncultivated electroautotroph from a biocathode enrichment
- Authors: Brian J. Eddie1 , Zheng Wang2 , Anthony P. Malanoski2 , Richard J. Hall3 , Steve D. Oh3 , Cheryl Heiner3 , Baochuan Lin2 , Sarah M. Strycharz-Glaven2
-
- VIEW AFFILIATIONS
-
1 1 ASEE Post Doctoral Fellow, United States Naval Research Laboratory, 4555 Overlook Ave SW, Washington, DC 20375, USA 2 2 United States Naval Research Laboratory, 4555 Overlook Ave SW, Washington, DC 20375, USA 3 3 Pacific Biosciences, 1380 Willow Rd, Menlo Park, CA 94025, USA
- Correspondence Brian J. Eddie [email protected]
- First Published Online: 10 June 2016, International Journal of Systematic and Evolutionary Microbiology 66: 2178-2185, doi: 10.1099/ijsem.0.001006
- Subject: New taxa - Proteobacteria
- Received:
- Accepted:
- Cover date:




‘Candidatus Tenderia electrophaga', an uncultivated electroautotroph from a biocathode enrichment, Page 1 of 1
< Previous page | Next page > /docserver/preview/fulltext/ijsem/66/6/2178_ijsem001006-1.gif
-
Biocathode communities are of interest for a variety of applications, including electrosynthesis, bioremediation, and biosensors, yet much remains to be understood about the biological processes that occur to enable these communities to grow. One major difficulty in understanding these communities is that the critical autotrophic organisms are difficult to cultivate. An uncultivated, electroautotrophic bacterium previously identified as an uncultivated member of the family Chromatiaceae appears to be a key organism in an autotrophic biocathode microbial community. Metagenomic, metaproteomic and metatranscriptomic characterization of this community indicates that there is likely a single organism that utilizes electrons from the cathode to fix CO2, yet this organism has not been obtained in pure culture. Fluorescence in situ hybridization reveals that the organism grows as rod-shaped cells approximately 1.8 × 0.6 µm, and forms large clumps on the cathode. The genomic DNA G+C content was 59.2 mol%. Here we identify the key features of this organism and propose ‘Candidatus Tenderia electrophaga’, within the Gammaproteobacteria on the basis of low nucleotide and predicted protein sequence identity to known members of the orders Chromatiales and Thiotrichales .
-
The GenBank/EMBL/DDBJ accession numbers for the genome and plasmid sequences of ‘Candidatus Tenderia electrophaga’ are CP013099 and CP013100, respectively, as part of Bioproject PRJNA244670 and BioSample SAMN04120379.
- Keyword(s): biocathode, Metagenomic, electroautotroph
-
Abbreviations: FISH fluorescence in situ hybridization ML maximum-likelihood NJ neighbour-joining SHE Standard Hydrogen Electrode
© 2016 IUMS | Published by the Microbiology Society
-
Bose A. , Gardel E. J. , Vidoudez C. , Parra E. A. , Girguis P. R. . ( 2014;). Electron uptake by iron-oxidizing phototrophic bacteria. . Nat Commun 5:. [CrossRef] [PubMed]
-
Childers S. E. , Ciufo S. , Lovley D. R. . ( 2002;). Geobacter metallireducens accesses insoluble Fe(III) oxide by chemotaxis. . Nature 416: 767––769. [CrossRef] [PubMed]
-
Chin C. S. , Alexander D. H. , Marks P. , Klammer A. A. , Drake J. , Heiner C. , Clum A. , Copeland A. , Huddleston J. , Eichler E. E. . ( 2013;). Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. . Nat Methods 10: 563––569. [CrossRef] [PubMed]
-
Clark T. A. , Murray I. A. , Morgan R. D. , Kislyuk A. O. , Spittle K. E. , Boitano M. , Fomenkov A. , Roberts R. J. , Korlach J. . ( 2012;). Characterization of DNA methyltransferase specificities using single-molecule, real-time DNA sequencing. . Nucleic Acids Res 40: e29–e29. [CrossRef] [PubMed]
-
Drake S. L. , Koomey M. . ( 1995;). The product of the pilQ gene is essential for the biogenesis of type IV pili in Neisseria gonorrhoeae . . Mol Microbiol 18: 975––986. [CrossRef] [PubMed]
-
Emerson D. , Floyd M. M. . ( 2005;). Enrichment and isolation of iron-oxidizing bacteria at neutral pH. . Methods Enzymol 397: 112––123. [CrossRef] [PubMed]
-
Forward J. A. , Behrendt M. C. , Wyborn N. R. , Cross R. , Kelly D. J. . ( 1997;). TRAP transporters: A new family of periplasmic solute transport systems encoded by the dctPQM genes of Rhodobacter capsulatus and by homologs in diverse Gram-negative bacteria. . J Bacteriol 179: 5482––5493.[PubMed]
-
Fuchs B. , Pernthaler J. , Amann R. . ( 2007;). Single cell identification by fluorescence in situ hybridization. . Methods for General and Molecular Microbiology 3: 886––896.
-
Higgins C. F. . ( 2001;). ABC transporters: Physiology, structure and mechanism–an overview. . Res Microbiol 152: 205––210. [CrossRef] [PubMed]
-
Ishii T. , Kawaichi S. , Nakagawa H. , Hashimoto K. , Nakamura R. . ( 2015;). From chemolithoautotrophs to electrolithoautotrophs: CO2 fixation by Fe (II)-oxidizing bacteria coupled with direct uptake of electrons from solid electron sources. . Front Microbiol 6:. [CrossRef] [PubMed]
-
Jeon B. Y. , Jung I. L. , Park D. H. . ( 2012;). Enrichment and isolation of CO2-fixing bacteria with electrochemical reducing power as a sole energy source. . Journal of Environmental Protection 3:.[CrossRef]
-
Karp P. D. , Paley S. M. , Krummenacker M. , Latendresse M. , Dale J. M. , Lee T. J. , Kaipa P. , Gilham F. , Spaulding A. , Popescu L. . ( 2010;). Pathway Tools version 13.0: Integrated software for pathway/genome informatics and systems biology. . Brief Bioinform 11:. [CrossRef] [PubMed]
-
Kimura M. . ( 1980;). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16: 111––120. [CrossRef] [PubMed]
-
Le S. Q. , Gascuel O. . ( 2008;). An improved general amino acid replacement matrix. . Mol Biol Evol 25: 1307––1320. [CrossRef] [PubMed]
-
Leary D. H. , Hervey W. J. , Malanoski A. P. , Wang Z. , Eddie B. J. , Tender G. S. , Vora G. J. , Tender L. M. , Lin B. , Strycharz-Glaven S. M. . ( 2015;). Metaproteomic evidence of changes in protein expression following a change in electrode potential in a robust biocathode microbiome. . Proteomics 15: 3486––3496. [CrossRef] [PubMed]
-
Manz W. , Amann R. , Ludwig W. , Wagner M. , Schleifer K.-H. . ( 1992;). Phylogenetic oligodeoxynucleotide probes for the major subclasses of Proteobacteria: Problems and solutions. . Syst Appl Microbiol 15: 593––600. [CrossRef]
-
Marshall C. W. , Ross D. E. , Fichot E. B. , Norman R. S. , May H. D. . ( 2012;). Electrosynthesis of commodity chemicals by an autotrophic microbial community. . Appl Environ Microbiol 78: 8412––8420. [CrossRef] [PubMed]
-
Martens J. H. , Barg H. , Warren M. J. , Jahn D. . ( 2002;). Microbial production of vitamin B12. . Appl Microbiol Biotechnol 58: 275––285. [CrossRef] [PubMed]
-
Mattick J. S. . ( 2002;). Type IV pili and twitching motility. . Annu Rev Microbiol 56: 289––314. [CrossRef] [PubMed]
-
Murray R. G. , Stackebrandt E. . ( 1995;). Taxonomic note: Implementation of the provisional status Candidatus for incompletely described procaryotes. . Int J Syst Bacteriol 45: 186––187. [CrossRef] [PubMed]
-
Nei M. , Kumar S. . ( 2000;). Molecular Evolution and Phylogenetics : Oxford University Press.;
-
Overbeek R. , Olson R. , Pusch G. D. , Olsen G. J. , Davis J. J. , Disz T. , Edwards R. A. , Gerdes S. , Parrello B. , Shukla M. . ( 2014;). The SEED and the rapid annotation of microbial genomes using subsystems technology (RAST). . Nucleic Acids Res 42: D206––D214. [CrossRef] [PubMed]
-
PacBio SampleNet– Shared Protocol . ( 2014;). 10 kb to 20 kb template preparation and sequencing with low-input DNA. . http://www.pacb.com/wp-content/uploads/2015/09/Shared-282 Protocol-10-kb-to-20-Kb-Template-Preparation-with-Low-Input-DNA.pdf.
-
Parks D. H. , Imelfort M. , Skennerton C. T. , Hugenholtz P. , Tyson G. W. . ( 2015;). CheckM: Assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. . Genome Res 25: 1043––1055. [CrossRef]
-
Pruesse E. , Peplies J. , Glöckner F. O. . ( 2012;). SINA: Accurate high-throughput multiple sequence alignment of ribosomal RNA genes. . Bioinformatics 28: 1823––1829. [CrossRef] [PubMed]
-
Rabaey K. , Rozendal R. A. . ( 2010;). Microbial electrosynthesis - revisiting the electrical route for microbial production. . Nat Rev Microbiol 8: 706––716. [CrossRef] [PubMed]
-
Rosenbaum M. A. , Franks A. E. . ( 2014;). Microbial catalysis in bioelectrochemical technologies: Status quo, challenges and perspectives. . Appl Microbiol Biotechnol 98: 509––518. [CrossRef] [PubMed]
-
Rowe A. R. , Chellamuthu P. , Lam B. , Okamoto A. , Nealson K. H. . ( 2014;). Marine sediments microbes capable of electrode oxidation as a surrogate for lithotrophic insoluble substrate metabolism. . Front Microbiol 5: 784. [CrossRef] [PubMed]
-
Schwartz R. , Dayhoff M. . ( 1978;). Matrices for detecting distant relationships. . Atlas of Protein Sequence and Structure 5: 353––358.
-
Silverman M. , Simon M. . ( 1977;). Chemotaxis in Escherichia coli: methylation of che gene products. . Proc Natl Acad Sci U S A 74: 3317––3321.[PubMed] [CrossRef]
-
Smith M. A. , Finel M. , Korolik V. , Mendz G. L. . ( 2000;). Characteristics of the aerobic respiratory chains of the microaerophiles Campylobacter jejuni and Helicobacter pylori . . Arch Microbiol 174: 1––10. [CrossRef] [PubMed]
-
Strycharz-Glaven S. M. , Glaven R. H. , Wang Z. , Zhou J. , Vora G. J. , Tender L. M. . ( 2013;). Electrochemical investigation of a microbial solar cell reveals a nonphotosynthetic biocathode catalyst. . Appl Environ Microbiol 79: 3933––3942. [CrossRef] [PubMed]
-
Summers Z. M. , Gralnick J. A. , Bond D. R. . ( 2013;). Cultivation of an obligate Fe(II)-oxidizing lithoautotrophic bacterium using electrodes. . mBio 4: e00420–00412. [CrossRef] [PubMed]
-
Tamura K. , Stecher G. , Peterson D. , Filipski A. , Kumar S. . ( 2013;). MEGA6: molecular evolutionary genetics analysis version 6.0. . Mol Biol Evol 30: 2725––2729. [CrossRef] [PubMed]
-
Wang Z. , Leary D. H. , Malanoski A. P. , Li R. W. , Hervey W. J. , Eddie B. J. , Tender G. S. , Yanosky S. G. , Vora G. J. , other authors . ( 2015;). A previously uncharacterized, nonphotosynthetic member of the Chromatiaceae is the primary CO2-fixing constituent in a self-regenerating biocathode. . Appl Environ Microbiol 81: 699––712. [CrossRef] [PubMed]
-
ZoBell C. E. . ( 1941;). Studies on marine bacteria. I. The cultural requirements of heterotrophic aerobes. . J Mar Res 4: 42––75.

Supplementary Data
Data loading....

Article metrics loading...

Full text loading...
Author and Article Information
-
This Journal
/content/journal/ijsem/10.1099/ijsem.0.001006dcterms_title,dcterms_subject,pub_serialTitlepub_serialIdent:journal/ijsem AND -contentType:BlogPost104 -
Other Society Journals
/content/journal/ijsem/10.1099/ijsem.0.001006dcterms_title,dcterms_subject-pub_serialIdent:journal/ijsem AND -contentType:BlogPost104 -
PubMed
-
Google Scholar
Figure data loading....