1887

Abstract

A Gram-stain-positive, heterotrophic, non-spore-forming, rod-shaped strain, designated OAct353, belonging to the genus was isolated from a soil sample collected from a coastal wetland of the Yellow River delta, PR China. The strain was identified using a polyphasic taxonomic approach. The strain grew in the presence of 0–10 % (w/v) NaCl (optimum 2–3 %), at pH 5.0–8.0 (optimum pH 7.0) and 12–36 °C (optimum 28 °C). The isolate contained 2,4-diaminobutyric acid, glutamic acid and glycine in its peptidoglycan. The acyl type of the cell-wall muramic acid was -acetyl. The whole-cell sugars of this novel strain were glucose, xylose and rhamnose. The predominant menaquinones were MK-12 (74 %) and MK-11 (21 %). The major phospholipids were phosphatidylglycerol, one unknown phospholipid, three unknown glycolipids and three unknown polar lipids. The major fatty acids were iso-C, anteiso-C and anteiso-C. The DNA G+C content was 69.6 mol %. DNA-DNA relatedness clearly separated strain OAct353 from its closest relatives. On the basis of phenotypic, phylogenetic and chemotaxonomic data, a novel species, sp. nov., is proposed. The type strain is OAct353 (=CGMCC4.7180=DSM 28305=NRRL B-59115).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001022
2016-06-10
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/6/2278.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001022&mimeType=html&fmt=ahah

References

  1. Anand S., Bala K., Saxena A., Schumann P., Lal R. 2012; Microbacterium amylolyticum sp. nov., isolated from soil from an industrial waste site. Int J Syst Evol Microbiol 62:2114–2120 [View Article][PubMed]
    [Google Scholar]
  2. Chen J., Chen H. M., Zhang Y. Q., Wei Y. Z., Li Q. P., Liu H. Y., Zhang Y. Q., Zhang Y. Q., Yu L. Y. 2011; Agromyces flavus sp. nov., anA. flavuscete isolated from soil. Int J Syst Evol Microbiol 61:1705–1709 [View Article][PubMed]
    [Google Scholar]
  3. Cowan S. T., Steel K. J. 1965 Manual for the Identification of Medical Bacteria London: Cambridge University Press;
    [Google Scholar]
  4. Cui X. L., Mao P. H., Zeng M., Li W. J., Zhang L. P., Xu L. H., Jiang C. L. 2001; Streptimonospora salina gen. nov., sp. nov., a new member of the family Nocardiopsaceae . Int J Syst Evol Microbiol 51:357–363 [View Article][PubMed]
    [Google Scholar]
  5. Dastager S. G., Liu Z. Q., Damare S., Tang S. K., Li W. J. 2012; Agromyces indicus sp. nov., isolated from mangroves sediment in Chorao Island, Goa, India. Antonie Van Leeuwenhoek 102:345–352 [View Article][PubMed]
    [Google Scholar]
  6. Dorofeeva L. V., Krausova V. I., Evtushenko L. I., Tiedje J. M. 2003; Agromyces albus sp. nov., isolated from a plant (Androsace sp.). Int J Syst Evol Microbiol 53:1435–1438 [View Article][PubMed]
    [Google Scholar]
  7. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229 [CrossRef]
    [Google Scholar]
  8. Felsenstein J. 1985; Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39:783–791 [CrossRef]
    [Google Scholar]
  9. Felsenstein J. 2002; PHYLIP (phylogeny inference package), version 3.6a. Seattle: Department of Genetics, University of Washington, 287 Seattle, WA, USA;
  10. Fitch W. M. 1971; Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416 [CrossRef]
    [Google Scholar]
  11. Gledhill W. E., Casida L. E. 1969; Predominant catalase-negative soil bacteria. III. Agromyces, gen. n., microorganisms intermediary to Actinomyces and Nocardia . Appl Microbiol 18:340–349[PubMed]
    [Google Scholar]
  12. Hamada M., Iino T., Iwami T., Harayama S., Tamura T., Suzuki K. 2010; Mobilicoccus pelagius gen. nov., sp. nov. and Piscicoccus intestinalis gen. nov., sp. nov., two new members of the family Dermatophilaceae, and reclassification of Dermatophilus chelonae (Masters et al.,1995) as Austwickia chelonae gen. nov., comb. nov . J Gen Appl Microbiol 56:427–436[PubMed] [CrossRef]
    [Google Scholar]
  13. Hamada M., Shibata C., Ishida Y., Tamura T., Yamamura H., Hayakawa M., Suzuki K. I. 2014a; Agromyces iriomotensis sp. nov. and Agromyces subtropicus sp. nov. isolated from soil. Int J Syst Evol Microbiol 64:833–838 [CrossRef]
    [Google Scholar]
  14. Hamada M., Shibata C., Tamura T., Suzuki K. I. 2014b; Agromyces marinus sp. nov., a novel actinobacterium isolated from sea sediment. J Antibiot 67:703–706 [View Article]
    [Google Scholar]
  15. Jurado V., Groth I., Gonzalez J. M., Laiz L., Schuetze B., SaizJimenez C. 2005b; Agromyces italicus sp. nov., Agromyces humatus sp. nov. and Agromyces lapidis sp. nov., isolated from Roman catacombs. Int J Syst Evol Microbiol 55:871–875 [CrossRef]
    [Google Scholar]
  16. Kaur C., Pinnaka A. K., Singh N. K., Bala M., Mayilraj S. 2013; Agromyces arachidis sp. nov. isolated from a Peanut (Arachis hypogaea) crop field. International Journal of Microbiology1155–1161
    [Google Scholar]
  17. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Yi H. et al. 2012; Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721 [View Article][PubMed]
    [Google Scholar]
  18. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120[PubMed] [CrossRef]
    [Google Scholar]
  19. Kroppenstedt R. M. 2004; Nocardiopsis aegyptia sp. nov., isolated from marine sediment. Int J Syst Evol Microbiol 54:453–456 [View Article][PubMed]
    [Google Scholar]
  20. Li W. J., Zhang L. P., Xu P., Cui X. L., Xu L. H., Zhang Z., Schumann P., Stackebrandt E., Jiang C. L. 2003; Agromyces aurantiacus sp. nov., isolated from a Chinese primeval forest. Int J Syst Evol Microbiol 53:303–307 [View Article][PubMed]
    [Google Scholar]
  21. Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5:109–118[PubMed] [CrossRef]
    [Google Scholar]
  22. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3:208–218 [CrossRef]
    [Google Scholar]
  23. McCarthy A. J., Cross T. 1984; A taxonomic study of Thermomonospora and other monosporic actinomycetes. J Gen Microbiol 130:5–25 [View Article]
    [Google Scholar]
  24. Minnikin D. E., Dobson G., Draper P. 1984; Characterization of Mycobacterium leprae by lipid analysis. Acta Leprol 3:113–120
    [Google Scholar]
  25. Minnikin D. E., O'Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H. 1984; An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241 [CrossRef]
    [Google Scholar]
  26. Ortiz-Martinez A., Gonzalez J. M., Evtushenko L. I., Jurado V., Laiz L., Groth I., Saiz-Jimenez C. 2004; Reclassification of Agromyces fucosus subsp. hippuratus as Agromyces hippuratus sp. nov., comb. nov. and emended description of Agromyces fucosus . Int J Syst Evol Microbiol 54:1553–1556 [View Article][PubMed]
    [Google Scholar]
  27. Rivas R., Trujillo M. E., Mateos P. F., Martínez-Molina E., Velázquez E. 2004; Agromyces ulmi sp. nov., xylanolytic bacterium isolated from Ulmus nigra in Spain. Int J Syst Evol Microbiol 54:1987–1990 [View Article][PubMed]
    [Google Scholar]
  28. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evo 4:406–425
    [Google Scholar]
  29. Sasser M. 1990; Identification of bacteria by gas chromatography of cellular fatty acids. USFCC Newsl 20:16
    [Google Scholar]
  30. Schumann P. 2011; Peptidoglycan structure. Methods Microbiol 38:101–129 [CrossRef]
    [Google Scholar]
  31. Shirling E. B., Gottlieb D. 1966; Methods for characterization of Streptomyces species. Int J Syst Bacteriol 16:313–340 [CrossRef]
    [Google Scholar]
  32. Smibert R. M., Krieg N. R. 1994; Phenotypic characterization. In Methods for General and Molecular Bacteriology, pp 607–654 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  33. Staneck J. L., Roberts G. D. 1974; Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 28:226–231[PubMed]
    [Google Scholar]
  34. Suzuki K., Sasaki J., Uramoto M., Nakase T., Komagata K. 1996; Agromyces mediolanus sp. nov., nom. rev., comb. nov., a species for 'Corynebacterium mediolanum' Mamoli 1939 and for some aniline-assimilating bacteria which contain 2,4-diaminobutyric acid in the cell wall peptidoglycan. Int J Syst Bacteriol 46:88–93 [View Article][PubMed]
    [Google Scholar]
  35. Takeuchi M., Hatano K. 2001; Agromyces luteolus sp. nov., Agromyces rhizospherae sp. nov. and Agromyces bracchium sp. nov., from the mangrove rhizosphere. Int J Syst Evol Microbiol 51:1529–1537 [View Article][PubMed]
    [Google Scholar]
  36. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S. 2013; MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729 [View Article][PubMed]
    [Google Scholar]
  37. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [View Article][PubMed]
    [Google Scholar]
  38. Uchida K., Kudo T., Suzuki K. I., Nakase. 1999; A new rapid method of glycolate test by diethyl ether extraction, which is applicable to a small amount of bacterial cells of less than one milligram. J Gen Appl Microbiol 45:49–56[PubMed] [CrossRef]
    [Google Scholar]
  39. Verlander C. P. 1992; Detection of horseradish peroxidase by colorimetry. In Nonisotopic DNA Probe Techniques pp 185–201Edited by Kricka L. J. New York: Academic Press; [CrossRef]
    [Google Scholar]
  40. Wayne L. G., Brenner D. J., Colwell R. R., other authors. 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
  41. Williams S. T., Goodfellow M., Alderson G. 1989; Genus Streptomyces Waksman and Henrici 1943, 339AL . In Bergey’s Manual of Systematic Bacteriology vol. 4 pp. 2452–2492 Edited by Williams S. T., Sharpe M. E., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  42. Xu P., Li W. J., Tang S. K., Zhang Y. Q., Chen G. Z., Chen H. H., Xu L. H., Jiang C. L. 2005; Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family ‘Oxalobacteraceae' isolated from China. Int J Syst Evol Microbiol 55:1149–1153 [View Article][PubMed]
    [Google Scholar]
  43. Xu S., Yan L., Zhang X., Wang C., Feng G., Li J. 2014; Nocardiopsis fildesensis sp. nov., an actinomycete isolated from soil. Int J Syst Evol Microbiol 64:174–179 [View Article][PubMed]
    [Google Scholar]
  44. Zgurskaya H. I., Evtushenko L. I., Akimov V. N., Voyevoda H. V., Dobrovolskaya T. G., Lysak L. V., Kalakoutskii L. V. 1992; Emended description of the genus Agromyces and description of Agromyces cerinus subsp. cerinus sp. nov., subsp. nov., Agromyces cerinus subsp. nitratus sp. nov., subsp. nov., Agromyces fucosus subsp. fucosus sp. nov., subsp. nov., and Agromyces fucosus subsp. hippuratus sp. nov., subsp. nov. Int J Syst Bacteriol 42:635–641 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001022
Loading
/content/journal/ijsem/10.1099/ijsem.0.001022
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error