1887

Abstract

Two extremely halophilic archaeal strains, DYS4 and Y2, were isolated from rock salt of the Jiangcheng Salt Mine, Yunnan province, China. Cells of the two strains were non-motile, pleomorphic rods and Gram-stain-negative. The cells produced light red-pigmented colonies. Strains DYS4 and Y2 required 2.6-3.4 M NaCl, pH 7.5– 8.0 and 42 ºC in aerobic conditions for optimal growth. Mgwas required for growth. The major polar lipids of both strains were phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester, phosphatidylglycerol sulfate and sulfated mannosyl glucosyl diether. An unidentified minor glycolipid spot was present for strains DYS4 and Y2, which differentiates them from the closely related species of the genera and . The lipid core of the glycolipid was -2,3-diphytanylglycerol (CC). The sequence similarity of the 16S rRNA gene demonstrated that the closest relatives of strains DYS4 and Y2 were 31-hong (94.1 % and 93.6 % 16S rRNA gene sequence similarity to DYS4 and Y2, respectively) and SKJ47 (93.4% and 93.1%). Phylogenetic analysis of the 16S rRNA gene and the gene revealed that strains DYS4 and Y2 formed an independent lineage closely related to the genera and . The DNA G+C contents of strains DYS4 and Y2 were 68.2 and 67.0 mol%, respectively. The DNA–DNA relatedness value between strains DYS4 and Y2 was 90.0 ± 0.5%, while that between strain DYS4 and other closest relatives was less than 26 % (19 ± 0.7 % for 31-hong and 25 ± 0.3% for SKJ47). The phenotypic, chemotaxonomic and phylogenetic properties suggest that strains DYS4 and Y2 (=CGMCC 1.15000=JCM 30892) represent a novel species of a new genus within the family , for which the name gen. nov., sp. nov. is proposed. The type strain of the type species is DYS4 (=CGMCC 1.14998=JCM 30891).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001033
2016-06-10
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/6/2327.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001033&mimeType=html&fmt=ahah

References

  1. Amoozegar M. A., Makhdoumi-Kakhki A., Shahzadeh Fazeli S. A., Azarbaijani R., Ventosa A. 2012; Halopenitus persicus gen. nov., sp. nov., an archaeon from an inland salt lake. Int J Syst Evol Microbiol 62:1932–1936 [View Article][PubMed]
    [Google Scholar]
  2. Amoozegar M. A., Makhdoumi-Kakhki A., Mehrshad M., Fazeli S. A., Ventosa A. 2013; Halopenitus malekzadehii sp. nov., an extremely halophilic archaeon isolated from a salt lake. Int J Syst Evol Microbiol 63:3232–3236 [View Article][PubMed]
    [Google Scholar]
  3. Chen Y. G., Cui X. L., Li W. J., Xu L. H., Wen M. L., Peng Q., Jiang C. L. 2008; Salinicoccus salitudinis sp. nov., a new moderately halophilic bacterium isolated from a saline soil sample. Extremophiles 12:197–203 [View Article][PubMed]
    [Google Scholar]
  4. Chen S., Liu H. C., Zhao D., Yang J., Zhou J., Xiang H. 2015; Halorubrum yunnanense sp. nov., isolated from a subterranean salt mine. Int J Syst Evol Microbiol 65:4526–4532 [View Article][PubMed]
    [Google Scholar]
  5. Cui H. L., Tohty D., Zhou P. J., Liu S. J. 2006; Halorubrum lipolyticum sp. nov. and Halorubrum aidingense sp. nov., isolated from two salt lakes in Xin-Jiang, China. Int J Syst Evol Microbiol 56:1631–1634 [View Article][PubMed]
    [Google Scholar]
  6. Cui H. L., Lin Z. Y., Dong Y., Zhou P. J., Liu S. J. 2007; Halorubrum litoreum sp. nov., an extremely halophilic archaeon from a solar saltern. Int J Syst Evol Microbiol 57:2204–2206 [View Article][PubMed]
    [Google Scholar]
  7. Cui H. L., Zhou P. J., Oren A., Liu S. J. 2009; Intraspecific polymorphism of 16S rRNA genes in two halophilic archaeal genera, Haloarcula and Halomicrobium. Extremophiles 13:31–37 [View Article][PubMed]
    [Google Scholar]
  8. Cui H. L., Gao X., Yang X., Xu X. W. 2010; Halorussus rarus gen. nov., sp. nov., a new member of the family Halobacteriaceae isolated from a marine solar saltern. Extremophiles 14:493–499 [View Article][PubMed]
    [Google Scholar]
  9. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142 [View Article][PubMed]
    [Google Scholar]
  10. Dussault H. P. 1955; An improved technique for staining red halophilic bacteria. J Bacteriol 70:484–485[PubMed]
    [Google Scholar]
  11. Gonzalez C., Gutierrez C., Ramirez C. 1978; Halobacterium vallismortis sp. nov. an amylolytic and carbohydrate-metabolizing, extremely halophilic bacterium. Can J Microbiol 24:710–715 [View Article][PubMed]
    [Google Scholar]
  12. Gupta R. S., Naushad S., Baker S. 2015; Phylogenomic analyses and molecular signatures for the class Halobacteria and its two major clades: a proposal for division of the class Halobacteria into an emended order Halobacteriales and two new orders, Haloferacales ord. nov. and Natrialbales ord. nov., containing the novel families Haloferacaceae fam. nov. and Natrialbaceae fam. nov. Int J Syst Evol Microbiol 65:1050–1069 [View Article][PubMed]
    [Google Scholar]
  13. Gutiérrez C., González C. 1972; Method for simultaneous detection of proteinase and esterase activities in extremely halophilic bacteria. Appl Microbiol 24:516–517[PubMed]
    [Google Scholar]
  14. Gutiérrez M. C., Castillo A. M., Pagaling E., Heaphy S., Kamekura M., Xue Y., Ma Y., Cowan D. A., Jones B. E., Grant W. D., Ventosa A. 2008; Halorubrum kocurii sp. nov., an archaeon isolated from a saline lake. Int J Syst Evol Microbiol 58:2031–2035 [View Article][PubMed]
    [Google Scholar]
  15. Hall T. A. 1999; Bioedit: A user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucl Acids Symp Ser 41:95–98
    [Google Scholar]
  16. Han D., Cui H. L., Li Z. R. 2014; Halopenitus salinus sp. nov., isolated from the brine of salted brown alga Laminaria. Antonie Van Leeuwenhoek 106:743–749 [View Article][PubMed]
    [Google Scholar]
  17. Han D., Cui H. L. 2015; Halorubrum laminariae sp. nov., isolated from the brine of salted brown alga Laminaria. Antonie Van Leeuwenhoek 107:217–223 [View Article][PubMed]
    [Google Scholar]
  18. Hu L., Pan H., Xue Y., Ventosa A., Cowan D. A., Jones B. E., Grant W. D., Ma Y. 2008; Halorubrum luteum sp. nov., isolated from Lake Chagannor, Inner Mongolia, China. Int J Syst Evol Microbiol 58:1705–1708 [View Article][PubMed]
    [Google Scholar]
  19. Huß V. A. R., Festl H., Schleifer K. H. 1983; Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4:184–192 [View Article][PubMed]
    [Google Scholar]
  20. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H., other authors. 2012; Introducing EzTaxon-e: A prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721 [View Article][PubMed]
    [Google Scholar]
  21. Marmur, J. 1961; A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3:208–218 [View Article]
    [Google Scholar]
  22. Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5:109–118 [View Article][PubMed]
    [Google Scholar]
  23. Martiny J., Hughes B., Bohannan B. J. M., Brown J., Colwell R., Fuhrman J., Green J., Horner-Devine M., Kane M., other authors. 2006; Microbial biogeography: Putting microorganisms on the map. Nat Rev Microbiol 4:102–112 [View Article][PubMed]
    [Google Scholar]
  24. Matsubara T., Iida-Tanaka N., Kamekura M., Moldoveanu N., Ishizuka I., Onishi H., Hayashi A., Kates M. 1994; Polar lipids of a non-alkaliphilic extremely halophilic archaebacterium strain 172: A novel bis-sulfated glycolipid. Biochim Biophys Acta 1214:97–108 [View Article][PubMed]
    [Google Scholar]
  25. Mcdade J. J., Weaver R. H. 1959; Rapid methods for the detection of gelatin hydrolysis. J Bacteriol 77:60–64[PubMed]
    [Google Scholar]
  26. Minegishi H., Kamekura M., Itoh T., Echigo A., Usami R., Hashimoto T. 2010; Further refinement of Halobacteriaceae phylogeny based based on the full-length RNA polymerase subunit B' (rpoB') gene. Int J Syst Evol Microbiol 60:2398–2408 [View Article][PubMed]
    [Google Scholar]
  27. Minnikin D. E., O'Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H. 1984; An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241 [View Article]
    [Google Scholar]
  28. Oren A., Ventosa A., Grant W. D. 1997; Proposed minimal standards for description of new taxa in the order Halobacteriales. Int J Syst Bacteriol 47:233–238 [View Article]
    [Google Scholar]
  29. Oren A., Arahal D. R., Ventosa A. 2009; Emended descriptions of genera of the family halobacteriaceae. Int J Syst Evol Microbiol 59:637–642 [View Article][PubMed]
    [Google Scholar]
  30. Sahl J. W., Pace N. R., Spear J. R. 2008; Comparative molecular analysis of endoevaporitic microbial communities. Appl Environ Microbiol 74:6444–6446 [View Article][PubMed]
    [Google Scholar]
  31. Smibert R. M., Krieg N. R. 1994; Phenotypic characterization. In Methods for General and Molecular Bacteriology , pp. 607–654 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  32. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. 2011; MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739 [View Article][PubMed]
    [Google Scholar]
  33. Torreblanca M., Rodriguez-Valera F., Juez G., Ventosa A., Kamekura M., Kates M. 1986; Classification of non-alkaliphilic halobacteria based on numerical taxonomy and polar lipid composition, and description of Haloarcula gen. nov. and Haloferax gen. nov. Syst Appl Microbiol 8:89–99 [View Article]
    [Google Scholar]
  34. Wang Y. X., Wang Z. G., Liu J. H., Chen Y. G., Zhang, Wen M. L., Xu L. H., Peng Q., Cui X. L. 2009; Sediminimonas qiaohouensis gen. nov., sp. nov., a member of the Roseobacter clade in the order Rhodobacterales. Int J Syst Evol Microbiol 59:1561–1567 [View Article][PubMed]
    [Google Scholar]
  35. Yim K. J., Kwon J., Cha I. T., Oh K. S., Song H. S., Lee H. W., Rhee J. K., Song E. J., Rho J. R., other authors. 2015; Occurrence of viable, red-pigmented haloarchaea in the plumage of captive flamingoes. Sci Rep 5:16425 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001033
Loading
/content/journal/ijsem/10.1099/ijsem.0.001033
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error