1887

Abstract

Two novel actinobacterial strains, UC12 and UC33, were isolated from forest topsoil in Suwon, Gyeonggi-Do, South Korea. Comparative analysis of nearly full-length 16S rRNA gene sequences of UC12and UC33 revealed close pairwise similarity with species of the genus , and the UC12 and UC33sequences were most closely related to MBRL 353 (98.91 % 16S rRNA gene sequence similarity) and IMMIB RIV-085 (97.71 %), respectively. DNA–DNA hybridization showed 33.05–35.60 % genomic similarity between strains UC12 and UC33, while strain UC12 shared DNA–DNA relatedness values of 32.71–41.29 % with the closest species of the genus and strain UC33 shared 29.12–37.91 % genomic relatedness with the closest species of the genus . Both strains showed similar chemotaxonomic characteristics. The major fatty acids were C, summed feature 3, Cω9 and C 10-methyl. The polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol and phosphatidylinositol mannoside. The major quinone derived was MK-8(H). The cell-wall peptidoglycan contained -diaminopimelic acid, and galactose, glucose, arabinose and ribose were detected in whole cells. Mycolic acids were detected. The DNA G+C content of strains UC12 and UC33 was 72.7 mol% and 68.8 mol%, respectively. Both strains produced antibiotic(s) that inhibited bacterial pathogens but not fungi. Based on the physiological, biochemical and genotypic features and the DNA–DNA hybridization between the isolates and type strains of closely related species, we propose that these bacteria be classified as novel species of the genus with the names sp. nov. (type strain UC12=KACC 18499=NBRC 111580) and sp. nov. (type strain UC33=KACC 18500=NBRC 111581).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001039
2016-06-10
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/6/2362.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001039&mimeType=html&fmt=ahah

References

  1. Auffret M. D., Yergeau E., Labbé D., Fayolle-Guichard F., Greer C. W. 2015; Importance of Rhodococcus strains in a bacterial consortium degrading a mixture of hydrocarbons, gasoline, and diesel oil additives revealed by metatranscriptomic analysis. Appl Microbiol Biotechnol 99:2419–2430 [View Article][PubMed]
    [Google Scholar]
  2. Auffret M., Labbé D., Thouand G., Greer C. W., Fayolle-Guichard F. 2009; Degradation of a mixture of hydrocarbons, gasoline, and diesel oil additives by Rhodococcus aetherivorans and Rhod ococcus wratislaviensis . Appl Environ Microbiol 75:7774–7782 [View Article][PubMed]
    [Google Scholar]
  3. Collins M. D., Goodfellow M. 1979; Fatty acid and polar lipid composition in the classification of Cellulomonas, Oerskovia and related taxa. J Appl Bacteriol 41:81–95
    [Google Scholar]
  4. Dastager S. G., Mawlankar R., Tang S. K., Krishnamurthi S., Ramana V. V., Joseph N., Shouche Y. S. 2014; Rhodococcus enclensis sp. nov., a novel member of the genus Rhodococcus . Int J Syst Evol Microbiol 64:2693–2699 [View Article][PubMed]
    [Google Scholar]
  5. de Carvalho C. C. C. R., da Fonseca M. M. R. 2005; Degradation of hydrocarbons and alcohols at different temperatures and salinities by Rhodococcus erythropolis DCL14. FEMS Microbiol Ecol 51:389–399 [View Article][PubMed]
    [Google Scholar]
  6. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229 [View Article]
    [Google Scholar]
  7. Felsenstein J. 1985; Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39:783–791 [View Article]
    [Google Scholar]
  8. Frank J. A., Reich C. I., Sharma S., Weisbaum J. S., Wilson B. A., Olsen G. J. 2008; Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes. Appl Environ Microbiol 74:2461–2470 [View Article][PubMed]
    [Google Scholar]
  9. Ghosh A., Paul D., Prakash D., Mayilraj S., Jain R. K. 2006; Rhodococcus imtechensis sp. nov., a nitrophenol-degrading actinomycete. Int J Syst Evol Microbiol 56:1965–1969 [View Article][PubMed]
    [Google Scholar]
  10. Goodfellow M., Alderson G. 1977; The actinomycete-genus Rhod ococcus: A home for the “rhodochrous” complex. J Gen Microbiol 100:99–122 [View Article][PubMed]
    [Google Scholar]
  11. Gordon R. E., Mihm J. M. 1957; A comparative study of some strains received as Nocardia . J Bacteriol 73:15–27[PubMed]
    [Google Scholar]
  12. Gordon R. E. 1966; Some strains in search of a genus Corynebacterium, Mycobacterium, Nocardia or what?. J Gen Microbiol 43:329–343 [View Article][PubMed]
    [Google Scholar]
  13. Guo Q. Q., Ming H., Meng X. L., Duan Y. Y., Gao R., Zhang J. X., Huang J. R., Li W. J., Nie G. X. 2015; Rhodococcus agglutinans sp. nov., an actinobacterium isolated from a soil sample. Antonie Van Leeuwenhoek 107:1271–1280 [View Article][PubMed]
    [Google Scholar]
  14. Hall T. A. 1999; BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98
    [Google Scholar]
  15. Hamamura N., Olson S. H., Ward D. M., Inskeep W. P. 2006; Microbial population dynamics associated with crude oil biodegradation in diverse soils. Int J Syst Evol Microbiol 72:6316–6324 [View Article]
    [Google Scholar]
  16. Jacin H., Mishkin A. R. 1965; Separation of carbohydrates on borate-impregnated silica gel G plates. J Chromatogr A 18:170–173 [CrossRef]
    [Google Scholar]
  17. Jones A. L., Goodfellow M. 2012; Genus IV. Rhodococcus (Zopf 1891) emend. Goodfellow, Alderson and Chun 1998a. In Bergey's manual® of Systematic Bacteriology the Actinobacteria, Part A, 2nd edn. vol. 5 pp 437–464 Edited by Goodfellow M., Kämpfer P., Busse H.-J., Trujillo M. E., Suzuki K., Ludwig W., Whitman. London, New York: Springer;
    [Google Scholar]
  18. Kanetsuna F., Bartoli A. 1972; A simple chemical method to differentiate Mycobacterium from Nocardia . J Gen Microbiol 70:209–212 [View Article][PubMed]
    [Google Scholar]
  19. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H. et al. 2012; Introducing EzTaxon-e: A prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721 [View Article][PubMed]
    [Google Scholar]
  20. Kimura M. 1983 The Neutral Theory of Molecular Evolution Cambridge: Cambridge University Press; [View Article]
    [Google Scholar]
  21. Kitagawa W., Tamura T. 2008; Three types of antibiotics produced from Rhodococcus erythropolis strains. Microbes Environ 23:167–171 [View Article][PubMed]
    [Google Scholar]
  22. Klatte S., Kroppenstedt R. M., Rainey F. A. 1994; Rhodococcus opacus sp. nov., An unusual nutritionally versatileversatile Rhodococcus-species. System Appl Microbiol 17:355–360 [View Article]
    [Google Scholar]
  23. Komagata K., Suzuki K.-I. 1987; Lipids and cell-wall analysis in bacterial systematics. Methods Microbiol 19:161–207 [View Article]
    [Google Scholar]
  24. Krieg N. R., Padgett P. J. 2011; Phenotypic and physiological characterization methods. In Methods Microbiol, 1st edn. vol. 38 pp. 15–60 Edited by Rainey F., Oren A. Oxford, UK: Academic Press, Elsevier;
    [Google Scholar]
  25. Kundu D., Hazra C., Chaudhari A. 2015; Biodegradation of 2,4-dinitrotoluene with Rhodococcus pyridinivorans NT2: characteristics, kinetic modeling, physiological responses and metabolic pathway. RSC Adv 5:38818–38829 [CrossRef]
    [Google Scholar]
  26. Kämpfer P., Dott W., Martin K., Glaeser S. P. 2014; Rhodococcus defluvii sp. nov., isolated from wastewater of a bioreactor and formal proposal to reclassify [Corynebacterium hoagii] and Rhodococcus equi as Rhodococcus hoagii comb. nov. Int J Syst Evol Microbiol 64:755–761 [View Article][PubMed]
    [Google Scholar]
  27. Kämpfer P., Wellner S., Lohse K., Lodders N., Martin K. 2013; Rhodococcus cerastii sp. nov. and Rhodococcus trifolii sp. nov., two novel species isolated from leaf surfaces. Int J Syst Evol Microbiol 63:1024–1029 [View Article][PubMed]
    [Google Scholar]
  28. Lechevalier M. P., Lechevalier H. 1970; Chemical composition as a criterion in the classification of aerobic actinomycetes. Int J Syst Bacteriol 20:435–443 [CrossRef]
    [Google Scholar]
  29. Lechevalier M. P., Lechevalier H. A. 1980; The chemotaxonomy of actinomycetes. In Actinomycete Taxonomy (Special Publication No. 6) pp. 227–291 Edited by Dietz A., Thayer J. Arlington, VA: Society for Industrial Microbiology;
    [Google Scholar]
  30. Lee E.-H., Kim J., Cho K.-S., Ahn Y. G., Hwang G.-S. 2010; Degradation of hexane and other recalcitrant hydrocarbons by a novel isolate, Rhodococcus sp. EH831. Environ Sci Pollut Research 17:64–77 [View Article]
    [Google Scholar]
  31. Lee E. H., Kang Y. S., Cho K. S. 2011; Bioremediation of diesel-contaminated soils by natural attenuation, biostimulation and bioaugmentation employing Rhodococcus sp EH831. Korean J Microbiol Biotechnol 39:86–92
    [Google Scholar]
  32. Li C., Zhou Z.-X., Jia X.-Q., Chen Y., Liu J., Wen J.-P. 2013; Biodegradation of crude oil by a newly isolated strain Rhodococcus sp. JZX-01. Appl Biochem Biotechnol 171:1715–1725 [View Article]
    [Google Scholar]
  33. Mayilraj S., Krishnamurthi S., Saha P., Saini H. S. 2006; Rhodococcus kroppenstedtii sp. nov., a novel actinobacterium isolated from a cold desert of the Himalayas, India. Int J Syst Evol Microbiol 56:979–982 [View Article][PubMed]
    [Google Scholar]
  34. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [View Article]
    [Google Scholar]
  35. Minnikin D. E., O'Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H. 1984; An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241 [View Article]
    [Google Scholar]
  36. Nachtigall J., Schneider K., Nicholson G., Goodfellow M., Zinecker H., Imhoff J. F., Süssmuth R. D., Fiedler H. P. 2010; Two new aurachins from Rhodococcus sp. Acta 2259*. J Antibiot 63:567–569 [View Article][PubMed]
    [Google Scholar]
  37. Nimaichand S., Sanasam S., Zheng L. Q., Zhu W. Y., Yang L. L., Tang S. K., Ningthoujam D. S., Li W. J. 2013; Rhodococcus canchipurensis sp. nov., an actinomycete isolated from a limestone deposit site. Int J Syst Evol Microbiol 63:114–118 [View Article][PubMed]
    [Google Scholar]
  38. Overbeck A. 1891; Zur kenntnis der Fettfarbstoff-Production bei Spaltpilzen. Nova Acta Leopoldina 55:399–416
    [Google Scholar]
  39. Peng F., Wang Y., Sun F., Liu Z., Lai Q., Shao Z. 2008; A novel lipopeptide produced by a Pacific Ocean deep-sea bacterium, Rhodococcus sp. TW53. J Appl Microbiol 105:698–705 [View Article]
    [Google Scholar]
  40. Pitcher D. G., Saunders N. A., Owen R. J. 1989; Rapid extraction of bacterial genomic DNA with guanidium thiocyanate. Lett Appl Microbiol 8:151–156 [View Article]
    [Google Scholar]
  41. Rohde M. 2011; Microscopy. In Methods in Microbiology, 1st edn. vol. 38 pp 61–100 Edited by Rainey F., Oren A. Elsevier’s Science & Technology Rights Department in Oxford, UK: Academic Press, Elsevier; [View Article]
    [Google Scholar]
  42. Sasser M. 1990; Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Technical Note 101 Newark, DE: MIDI Inc;
    [Google Scholar]
  43. Sierra G. 1957; A simple method for the detection of lipolytic activity of micro-organisms and some observations on the influence of the contact between cells and fatty substrates. Antonie Van Leeuwenhoek 23:15–22 [View Article][PubMed]
    [Google Scholar]
  44. Staneck J. L., Roberts G. D. 1974; Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 28:226–231[PubMed]
    [Google Scholar]
  45. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S. 2013; MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729 [View Article][PubMed]
    [Google Scholar]
  46. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The CLUSTAL_X Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [View Article][PubMed]
    [Google Scholar]
  47. Tschech A., Pfennig N. 1984; Growth yield increase linked to caffeate reduction in Acetobacterium woodii . Arch Microbiol 137:163–167 [View Article]
    [Google Scholar]
  48. Tsukamura M. 1974; A further numerical taxonomic study of the Rhodochrous group. Jpn J Microbiol 18:37–44 [View Article][PubMed]
    [Google Scholar]
  49. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moor L. H., Moore W. E. C., Murray R. G. E. et al. 1987; Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
  50. Wheater D. M. 1955; The characteristics of Lactobacillus acidophilus and Lactobacillus bulgaricus . J Gen Microbiol 12:123–132 [View Article][PubMed]
    [Google Scholar]
  51. White D. A., Hird L. C., Ali S. T. 2013; Production and characterization of a trehalolipid biosurfactant produced by the novel marine bacterium Rhodococcus sp., strain PML026. J Appl Microbiol 115:744–755 [View Article][PubMed]
    [Google Scholar]
  52. Widdel F., Kohring G.-W., Mayer F. 1983; Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids III. Characterization of the filamentous gliding Desulfonema limicola gen. nov. sp. nov. and Desulfonema Magnum sp. nov. Arch Microbiol 134:286–294 [CrossRef]
    [Google Scholar]
  53. Yassin A. F. 2005; Rhodococcus triatomae sp. nov., isolated from a blood-sucking bug. Int J Syst Evol Microbiol 55:1575–1579 [View Article][PubMed]
    [Google Scholar]
  54. Yoon J. H., Cho Y. G., Kang S. S., Kim S. B., Lee S. T., Park Y. H. 2000; Rhodococcus koreensis sp. nov., a 2,4-dinitrophenol-degrading bacterium. Int J Syst Evol Microbiol 50:1193–1201 [View Article][PubMed]
    [Google Scholar]
  55. Zopf W. 1891; Über ausscheidung von fettfarbstoffen (Lipochromen)seitens gewisser spaltpilze. DerBtsch Bot Ges 9:22–28
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001039
Loading
/content/journal/ijsem/10.1099/ijsem.0.001039
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error