1887

Abstract

Anaerobic enrichments with acetate as electron donor and carbon source, and elemental sulfur as electron acceptor at 4 M NaCl using anaerobic sediments and brines from several hypersaline lakes in Kulunda Steppe (Altai, Russia) resulted in isolation in pure culture of four strains of obligately anaerobic haloarchae growing exclusively by sulfur respiration. Such metabolism has not yet been demonstrated in any known species of and in the whole archaeal kingdom, acetate oxidation with sulfur as acceptor was not previously demonstrated. The four isolates had nearly identical 16S rRNA gene sequences and formed a novel genus-level branch within the family . The strains had a restricted substrate range limited to acetate and pyruvate as electron donors and elemental sulfur as electron acceptor. In contrast to aerobic haloarchaea, the biomass of anaerobic isolates completely lacked the typical red pigments. Growth with acetate+sulfur was observed between 3–5 M NaCl and at a pH range from 6.7 to 8.0. The membrane core lipids were dominated by archaeols. On the basis of distinct physiological and phylogenetic data, the sulfur-respiring isolates represent a novel species of a new genus in the family , for which the name gen. nov., sp. nov. is proposed. The type strain of the type species is HSR2 (=JCM 30661=UNIQEM U935).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001041
2016-06-10
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/6/2377.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001041&mimeType=html&fmt=ahah

References

  1. Felsenstein J. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376[PubMed] [CrossRef]
    [Google Scholar]
  2. Fitch W. M. 1971; Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416 [View Article]
    [Google Scholar]
  3. Gupta R. S., Naushad S., Baker S. 2015; Phylogenomic analyses and molecular signatures for the class Halobacteria and its two major clades: a proposal for division of the class Halobacteria into an emended order Halobacteriales and two new orders, Haloferacales ord. nov. and Natrialbales ord. nov., containing the novel families Haloferacaceae fam. nov. and Natrialbaceae fam. nov. Int J Syst Evol Microbiol 65:1050–1069 [View Article][PubMed]
    [Google Scholar]
  4. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H., other authors. 2012; Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721 [View Article][PubMed]
    [Google Scholar]
  5. King G. M. 2015; Carbon monoxide as a metabolic energy source for extremely halophilic microbes: implications for microbial activity in Mars regolith. Proc. Nat. Ac. Sci 112:4465–4470 [View Article]
    [Google Scholar]
  6. Prüsse E., Peplies J., Glöckner F. O. 2012; SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 28:1823–1829 [View Article][PubMed]
    [Google Scholar]
  7. Rascovan N., Maldonado J., Vazquez M. P., Farías, M. E. 2016; Metagenomic study of red biofilms from Diamante Lake reveals ancient arsenic bioenergetics in haloarchaea. ISME J 10:299–309 [View Article][PubMed]
    [Google Scholar]
  8. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425[PubMed]
    [Google Scholar]
  9. Sinninghe Damsté J. S., Rijpstra W. I. C., Hopmans E. C., Weijers J. W. H., Foesel B. U., Overmann J., Dedysh S. N. 2011; 13,16-Dimethyl octacosanedioic acid (iso-diabolic acid): a common membrane-spanning lipid of Acidobacteria subdivisions 1 and 3. Appl Environ Microbiol 77:4147–4154 [View Article]
    [Google Scholar]
  10. Sorokin D. Y., Zacharova E. E., Pimenov N. V., Tourova T. P., Panteleeva A. N., Muyzer G. 2012; Sulfidogenesis in hypersaline chloride-sulfate lakes of Kulunda Steppe (Altai, Russia). FEMS Microbiol Ecol 79:445–453 [View Article][PubMed]
    [Google Scholar]
  11. Sorokin D. Y., Toshchakov, Kolganova T. V., Kublanov I. V. 2015; Halo(natrono)archaea isolated from hypersaline lakes utilize cellulose and chitin as growth substrates. Front Microbiol 6:942 [View Article][PubMed]
    [Google Scholar]
  12. Sorokin D. Y., Kublanov I. V., Gavrilov S. N., Rojo D., Roman P., Golyshin P. N., Slepak V. Z., Smedile F., Ferrer M., other authors. 2016; Elemental sulfur and acetate can support life of a novel strictly anaerobic haloarchaeon. ISME J 10:240–252 [View Article][PubMed]
    [Google Scholar]
  13. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. 2011; MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739 [View Article][PubMed]
    [Google Scholar]
  14. Villanueva L., Schouten S., Sinninghe Damsté J. S. 2014; A re-evaluation of the archaeal membrane lipid biosynthetic pathway. Nature Rev Microbiol 12:438–448 [CrossRef]
    [Google Scholar]
  15. Weijers J. W. H., Panoto E., van Bleijswijk J., Schouten S., Rijpstra W. I. C., Balk M., Stams A. J. M., Sinninghe Damsté J. S. 2009; Constraints on the biological source(s) of the orphan branched tetraether membrane lipids. Geomicrobiol J 26:402–414 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001041
Loading
/content/journal/ijsem/10.1099/ijsem.0.001041
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error