1887

Abstract

A Gram-positive-staining, aerobic, endospore-forming bacterial strain, isolated from the stem of a cucumber plant, was studied in detail for its taxonomic position. Based on 16S rRNA gene sequence similarity comparisons, strain AP-115 was grouped into the genus , most closely related to (98.8 %), and (both 98.4 %). The 16S rRNA gene sequence similarity to other species of the genus was ≤98.4 %. Chemotaxonomic characterization supported allocation of the strain to the genus . The quinone system contained exclusively menaquinone MK-7, and in the polar lipid profile diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and phosphatidylserine were predominating. The major component in the polyamine pattern was spermidine, and the diagnostic diamino acid of the peptidoglycan was -diaminopimelic acid. The major fatty acids were iso- and anteiso-branched fatty acids. The results of physiological and biochemical tests allowed phenotypic differentiation of strain AP-115 from closely related species. Thus, AP-115 represents a novel species of the genus , for which the name sp. nov. is proposed, with AP-115 (=LMG 29222=CCM 8653) as the type strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001087
2016-07-01
2024-03-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/7/2599.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001087&mimeType=html&fmt=ahah

References

  1. Altenburger P., Kämpfer P., Makristathis A., Lubitz W., Busse H. J. 1996; Classification of bacteria isolated from a medieval wall painting. J Biotechnol 47:39–52 [CrossRef]
    [Google Scholar]
  2. Altenburger P., Kämpfer P., Akimov V. N., Lubitz W., Busse H. J. 1997; Polyamine distribution in actinomycetes with group B peptidoglycan and species of the genera Brevibacterium, Corynebacterium and Tsukamurella . Int J Syst Bacteriol 47:270–277 [CrossRef]
    [Google Scholar]
  3. Ash C., Priest F. G., Collins M. D. 1993; Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Proposal for the creation of a new genus Paenibacillus. Antonie Van Leeuwenhoek 64:253–260 [View Article][PubMed]
    [Google Scholar]
  4. Brosius J., Palmer M. L., Kennedy P. J., Noller H. F. 1978; Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli . Proc Natl Acad Sci USA 75:4801–4805[PubMed] [CrossRef]
    [Google Scholar]
  5. Busse H. J., Auling G. 1988; Polyamine pattern as a chemotaxonomic marker within the Proteobacteria . Syst Appl Microbiol 11:1–8 [CrossRef]
    [Google Scholar]
  6. Christensen W. B. 1946; Urea decomposition as a means of differentiating Proteus and Paracolon cultures from each other and from Salmonella and Shigella types. J Bacteriol 52:461–466[PubMed]
    [Google Scholar]
  7. Felsenstein J. 1985; Confidence limits of phylogenies: an approach using the bootstrap. Evolution (N Y) 39:783–791 [View Article]
    [Google Scholar]
  8. Felsenstein J. 2005; PHYLIP (Phylogeny Inference Package) version 3.6. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle .
  9. Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. 1994 Methods for General and Molecular Bacteriology (editors) Washington, DC: American Society for Microbiology;
    [Google Scholar]
  10. Glaeser S. P., Galatis H., Martin K., Kämpfer P. 2013; Niabella hirudinis and Niabella drilacis sp. nov., isolated from the medicinal leech Hirudo verbana. Int J Syst Evol Microbiol 63:3487–3493 [View Article][PubMed]
    [Google Scholar]
  11. Gonzalez J. M., Saiz-Jimenez C. 2002; A fluorimetric method for the estimation of G+C mol% content in microorganisms by thermal denaturation temperature. Environ Microbiol 4:770–773[PubMed] [CrossRef]
    [Google Scholar]
  12. Haggag W. M., Timmusk S. 2008; Colonization of peanut roots by biofilm-forming Paenibacillus polymyxa initiates biocontrol against crown rot disease. J Appl Microbiol 104:961–969 [View Article][PubMed]
    [Google Scholar]
  13. He J., Boland G. J., Zhou T. 2009; Concurrent selection for microbial suppression of Fusarium graminearum, Fusarium head blight and deoxynivalenol in wheat. J Appl Microbiol 106:1805–1817 [View Article][PubMed]
    [Google Scholar]
  14. Holl F. B., Chanway C. P., Turkington R., Radley R. A. 1988; Response of crested wheatgrass (Agropyron cristatum L.), perennial ryegrass (Lolium perenne) and white clover (Trifolium repensL.) to inoculation with Bacillus polymyxa. Soil Biol Biochem 20:19–24 [CrossRef]
    [Google Scholar]
  15. Judicial Commission of the International Commission of the Committee on Systematics of Prokaryotes 2005; The type species of the genus Paenibacillus Ash, et al. 1994 is Paenibacillus polymyxa Opinion 77. Int J Syst Evol Microbiol 55:
    [Google Scholar]
  16. Jukes T. H., Cantor C. R. 1969; Evolution of the protein molecules. In Mammalian Protein Metabolism21–132 Edited by Munro H. N. New York: Academic Press; [CrossRef]
    [Google Scholar]
  17. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H. et al. 2012; Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721 [CrossRef]
    [Google Scholar]
  18. Kämpfer P. 1990; Evaluation of the Titertek-Enterobac-Automated system (TTE-AS) for identification of Enterobacteriaceae . Zentbl Bakteriol 273:164–172 [CrossRef]
    [Google Scholar]
  19. Kämpfer P., Steiof M., Dott W. 1991; Microbiological characterisation of a fuel-oil contaminated site including numerical identification of heterotrophic water and soil bacteria. Microbiol Ecol 21:227–243 [CrossRef]
    [Google Scholar]
  20. Kämpfer P., Kroppenstedt R. M. 1996; Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 42:989–1005 [CrossRef]
    [Google Scholar]
  21. Lane D. J. 1991; 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics115–175 Edited by Stackebrandt E., Goodfellow M. United Kingdom: Wiley, Chichester;
    [Google Scholar]
  22. Logan N. A., Berge O., Bisphop A. H., Busse H. J., De Vos P., Fritze D., Heyndrickx M., Kämpfer P., Rabinovich L. et al. 2009; Proposed minimal standards for describing new taxa of aerobic, endospore-forming bacteria. Int J Syst Evol Microbiol 59:2114–2121 [CrossRef]
    [Google Scholar]
  23. Ludwig W., Strunk O., Westram R., Richter L., Meier H., Lai T., Steppi S, Yadhukumar A., Buchner A. et al. 2004; ARB: a software environment for sequence data. Nucleic Acids Res 32:1363–1371 [View Article][PubMed]
    [Google Scholar]
  24. Moaledj K. 1986; Comparison of Gram-staining and alternate methods, KOH test and aminopeptidase activity in aquatic bacteria: their application to numerical taxonomy. J Microbiol Methods 5:303–310 [CrossRef]
    [Google Scholar]
  25. Pitcher D. G., Saunders N. A., Owen R. J. 1989; Rapid extraction of bacterial genomic DNA with guanidium thiocyanate. Lett Appl Microbiol 8:151–156 [View Article]
    [Google Scholar]
  26. Pruesse E., Quast C., Knittel K., Fuchs B. M., Ludwig W., Peplies J., Glöckner F. O. 2007; SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 35:7188–7196 [View Article][PubMed]
    [Google Scholar]
  27. Schumann P. 2011; Peptidoglykan structure. In Methods in Microbiology (Taxonomy of Prokaryotes) vol. 38 pp 101–129 Edited by Rainey F. A., Oren A. London: Academic Press;
    [Google Scholar]
  28. Stamatakis A. 2006; RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690 [View Article][PubMed]
    [Google Scholar]
  29. Stolz A., Busse H. J., Kämpfer P. 2007; Pseudomonas knackmussii sp. nov. Int J Syst Evol Microbiol 57:572–576 [View Article][PubMed]
    [Google Scholar]
  30. Timmusk S., Nicander B., Granhall U., Tillberg E. 1999; Cytokinin production by Paenibacillus polymyxa . Soil Biology and Biochemistry 31:1847–1852 [View Article]
    [Google Scholar]
  31. Tindall B. J. 1990a; A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 13:128–130 [CrossRef]
    [Google Scholar]
  32. Tindall B. J. 1990b; Lipid composition of Halobacterium lacusprofundi . FEMS Microbiol Lett 66:199–202 [View Article]
    [Google Scholar]
  33. Tindall B. J. 2000; What is the type species of the genus Paenibacillus? Request for an opinion. Int J Syst Evol Microbiol 50:939–940 [View Article][PubMed]
    [Google Scholar]
  34. Yarza P., Richter M., Peplies J., Euzeby J., Amann R., Schleifer K. H., Ludwig W., Glöckner F. O., Rosselló-Móra R. et al. 2008; The all-species living tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. Syst Appl Microbiol 31:241–250 [View Article][PubMed]
    [Google Scholar]
  35. Ziemke F., Höfle M. G., Lalucat J., Rosselló-Mora R. 1998; Reclassification of Shewanella putrefaciens Owen's genomic group II as Shewanella baltica sp. nov. Int J Syst Bacteriol 48:179–186 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001087
Loading
/content/journal/ijsem/10.1099/ijsem.0.001087
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error