1887

Abstract

Two novel (S9 and S12) Gram-stain-positive, rod shaped, non-motile and endospore forming bacteria were isolated from Narayan Sarovar lake, in India. The high 16S rRNA gene sequence similarity (99.9 %) and DNA–DNA relatedness (86±2 %) indicated that strains S9and S12 were members of a single species. Based on the 16S rRNA gene sequence analysis, these strains were identified as belonging to the class and were most closely related to PN-105 (96.8 % sequence similarity), JSM 071004 (96.5 %) and JC167 (96.1 %). However, these strains shared only 90.3 % 16S rRNA gene sequence similarity with subsp. DSM 10, indicating that they might not be members of the genus . The cell-wall peptidoglycan contained -diaminopimelic acid. Polar lipids included diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, one unknown phospholipid and an unknown lipid. The predominant isoprenoid quinone was MK-7. Major fatty acids (>5 %) included anteiso-C, C, iso-C, anteiso-C, isoCand summed feature 3. The results of phylogenetic, chemotaxonomic and biochemical tests allowed a clear differentiation of strains S9 and S12 from all other members of the family The strains therefore represent a novel member of a new genus from the family , for which the name gen. nov., sp. nov. is proposed. The type strain is S9(=KCTC 33633=LMG 28644). Based on the present study, it is also proposed to transfer and to this new genus as comb. nov. and comb. nov.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001117
2016-07-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/7/2747.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001117&mimeType=html&fmt=ahah

References

  1. Addou N. A., Schumann P., Spröer C., Ben Hania W., Hacene H., Fauque G., Cayol J. L., Fardeau M.-L. 2015; Melghiribacillus thermohalophilus gen. nov., sp. nov., a novel filamentous, endospore-forming, thermophilic and halophilic bacterium. Int J Syst Evol Microbiol 65:1172–1179 [View Article][PubMed]
    [Google Scholar]
  2. Albert R. A., Archambault J., Lempa M., Hurst B., Richardson C., Gruenloh S., Duran M., Worliczek H. L., Huber B. E. et al. 2007; Proposal of Viridibacillus gen. nov. and reclassification of Bacillus arvi, Bacillus arenosi and Bacillus neidei as Viridibacillus arvi gen. nov., comb. nov., Viridibacillus arenosi comb. nov. and Viridibacillus neidei comb. nov. Int J Syst Evol Microbiol 57:2729–2737 [View Article][PubMed]
    [Google Scholar]
  3. Amoozegar M. A., Bagheri M., Didari M., Shahzedeh Fazeli S. A., Schumann P., Sánchez-Porro C., Ventosa A. 2013; Saliterribacillus persicus gen. nov., sp. nov., a moderately halophilic bacterium isolated from a hypersaline lake. Int J Syst Evol Microbiol 63:345–351 [View Article][PubMed]
    [Google Scholar]
  4. Amoozegar M. A., Bagheri M., Didari M., Mehrshad M., Schumann P., Spröer C., Sánchez-Porro C., Ventosa A. 2014; Aquibacillus halophilus gen. nov., sp. nov., a moderately halophilic bacterium from a hypersaline lake, and reclassification of Virgibacillus koreensis as Aquibacillus koreensis comb. nov. and Virgibacillus albus as Aquibacillus albus comb. nov. Int J Syst Evol Microbiol 64:3616–3623 [View Article][PubMed]
    [Google Scholar]
  5. Arahal D. R., Ventosa A. 2002; Moderately halophilic and halotolerant species of Bacillus and related genera. In Applications and Systematics of Bacillus and Relatives pp 83–99 Edited by Berkeley R., Heyndrickx M., Logan N., De Vos P. Oxford: Blackwell; [CrossRef]
    [Google Scholar]
  6. Chen Y. G., Zhang Y. Q., Wang Y. X., Liu Z. X., Klenk H. P., Xiao H. D., Tang S. K., Cui X. L., Li W. J. 2009; Bacillus neizhouensis sp. nov., a halophilic marine bacterium isolated from a sea anemone. Int J Syst Evol Microbiol 59:3035–3039 [View Article][PubMed]
    [Google Scholar]
  7. Cihan A. C., Koc M., Ozcan B., Tekin N., Cokmus C. 2014; Thermolongibacillus altinsuensis gen. nov., sp. nov. and Thermolongibacillus kozakliensis sp. nov., aerobic, thermophilic, long bacilli isolated from hot springs. Int J Syst Evol Microbiol 64:187–197 [View Article][PubMed]
    [Google Scholar]
  8. De la Haba R. R., Sánchez-Porro C., Márquez M. C., Ventosa A. 2011; Taxonomy of halophiles. In Extremophiles Handbook pp 255–308 Edited by Horikoshi K. Tokyo: Springer; [CrossRef]
    [Google Scholar]
  9. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142 [View Article][PubMed]
    [Google Scholar]
  10. Didari M., Amoozegar M. A., Bagheri M., Schumann P., Spröer C., Sánchez-Porro C., Ventosa A. 2012; Alteribacillus bidgolensis gen. nov., sp. nov., a moderately halophilic bacterium from a hypersaline lake, and reclassification of Bacillus persepolensis as Alteribacillus persepolensis comb. nov. Int J Syst Evol Microbiol 62:2691–2697 [View Article][PubMed]
    [Google Scholar]
  11. Echigo A., Minegishi H., Shimane Y., Kamekura M., Usami R. 2012; Natribacillus halophilus gen. nov., sp. nov., a moderately halophilic and alkalitolerant bacterium isolated from soil. Int J Syst Evol Microbiol 62:289–294 [View Article][PubMed]
    [Google Scholar]
  12. Euzéby J. P. 2011; List of Prokaryotic Names with Standing in Nomenclature. http://www.bacterio.cict.fr/index.html
  13. Glaeser S. P., Dott W., Busse H. J., Kämpfer P. 2013; Fictibacillus phosphorivorans gen. nov., sp. nov. and proposal to reclassify Bacillus arsenicus, Bacillus barbaricus, Bacillus macauensis, Bacillus nanhaiensis, Bacillus rigui, Bacillus solisalsi and Bacillus gelatini in the genus Fictibacillus . Int J Syst Evol Microbiol 63:2934–2944 [View Article][PubMed]
    [Google Scholar]
  14. Hasegawa T., Takizaea M., Tanida S. 1983; A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Appl Microbiol 29:319–322 [View Article]
    [Google Scholar]
  15. Huss V. A. R., Festl H., Schleifer K. H. 1983; Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4:184–192 [View Article][PubMed]
    [Google Scholar]
  16. Kates M. 1972 Techniques of Lipidology New York: Elsevier; [CrossRef]
    [Google Scholar]
  17. Kates M. 1986 Techniques of Lipidology: Isolation, Analysis, and Identification of Lipids Amsterdam: Elsevier;
    [Google Scholar]
  18. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H. et al. 2012; Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721 [View Article][PubMed]
    [Google Scholar]
  19. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120[PubMed] [CrossRef]
    [Google Scholar]
  20. Kämpfer P., Rosselló-Mora R., Falsen E., Busse H. J., Tindall B. J. 2006; Cohnella thermotolerans gen. nov., sp. nov., and classification of Paenibacillus hongkongensis' as Cohnella hongkongensis sp. nov. Int J Syst Evol Microbiol 56:781–786 [View Article][PubMed]
    [Google Scholar]
  21. Zhang Z., Yu M., Liu Y., Liang J., Wang M., Zhang X.-H. 2015; Aureibacillus halotolerans gen. nov., sp. nov., isolated from marine sediment. Int J Syst Evol Microbiol 65:3950–3958 [View Article]
    [Google Scholar]
  22. Logan N. A., Berge O., Bishop A. H., Busse H. J., De Vos P., Fritze D., Heyndrickx M., Kämpfer P., Rabinovitch L. et al. 2009; Proposed minimal standards for describing new taxa of aerobic, endospore-forming bacteria. Int J Syst Evol Microbiol 59:2114–2121 [View Article][PubMed]
    [Google Scholar]
  23. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 3:208–218 [View Article]
    [Google Scholar]
  24. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [View Article]
    [Google Scholar]
  25. Nielsen P., Fritze D., Priest F. G. 1995; Phenetic diversity of alkaliphilic Bacillus strains: proposal for nine new species. Microbiology 141:1745–1761 [View Article]
    [Google Scholar]
  26. Oren A., Duker S., Ritter S. 1996; The polar lipid composition of walsby's square bacterium. FEMS Microbiol Lett 138:135–140 [View Article]
    [Google Scholar]
  27. Reddy S. V., Aspana S., Tushar D. L., Sasikala C., Ramana C. 2013; Spirochaeta sphaeroplastigenens sp. nov., a halo-alkaliphilic, obligately anaerobic spirochaete isolated from soda lake Lonar. Int J Syst Evol Microbiol 63:2223–2228 [View Article][PubMed]
    [Google Scholar]
  28. Reddy S. V., Thirumala M., Sasikala C. H., Ramana C. H. V. 2015; Salibacterium halotolerans gen. nov. sp. nov., a novel bacterium isolated from a salt pan, reclassification of Bacillus qingdaonensis as Salibacterium qingdaonense comb. nov. and Bacillus halochares as Salibacterium halochares comb. nov. Int J Syst Evol Microbiol 65:4270–4275 [CrossRef]
    [Google Scholar]
  29. Sasser M. 1990 Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids Newark DE: MIDI Inc;
    [Google Scholar]
  30. Schleifer K. H., Kandler O. 1972; Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36:407–477[PubMed]
    [Google Scholar]
  31. Schleifer K. H. 1985; Analysis of the chemical composition and primary structure of murein. Methods Microbiol 18:123–156 [CrossRef]
    [Google Scholar]
  32. Seiler H., Wenning M., Scherer S. 2013; Domibacillus robiginosus gen. nov., sp. nov., isolated from a pharmaceutical clean room. Int J Syst Evol Microbiol 63:2054–2061 [View Article][PubMed]
    [Google Scholar]
  33. Sheu S. Y., Arun A. B., Jiang S. R., Young C. C., Chen W. M. 2011; Allobacillus halotolerans gen. nov., sp. nov. isolated from shrimp paste. Int J Syst Evol Microbiol 61:1023–1027 [View Article][PubMed]
    [Google Scholar]
  34. Smibert R. M., Krieg N. R. 1981; General characterization. In Manual of Methods for General Microbiology pp 409–443 Edited by Gerhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips G. B. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  35. Smibert R. M., Krieg N. R. 1994; Phenotypic characterization. In Methods for General and Molecular Bacteriology pp 607–654 Edited by Gerhardt P. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  36. Stackebrandt E., Goebel B. M. 1994; Place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849 [CrossRef]
    [Google Scholar]
  37. Subhash Y., Sasikala C., Ramana C. H. V. 2014; Bacillus luteus sp. nov., isolated from soil. Int J Syst Evol Microbiol 64:1580–1586 [View Article][PubMed]
    [Google Scholar]
  38. Tamaoka J., Fujimura Y.-K., Kuraishi H. 1983; Analysis of bacterial menaquinone mixtures by high performance liquid chromatography. J Appl Microbiol 54:31–36
    [Google Scholar]
  39. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. 2011; MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739 [View Article][PubMed]
    [Google Scholar]
  40. Tindall B. J. 1990a; Lipid composition of Halobacterium lacusprofundi . FEMS Microbiol Lett 66:199–202 [View Article]
    [Google Scholar]
  41. Tindall B. J. 1990b; A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 13:128–130 [CrossRef]
    [Google Scholar]
  42. Ventosa A., Quesada E., Rodriguez-Valera F., Ruiz-Berraquero F., Ramos-Cormenzana A. 1982; Numerical Taxonomy of Moderately Halophilic Gram-negative Rods. Microbiology 128:1959–1968 [View Article]
    [Google Scholar]
  43. Ventosa A., Nieto J. J., Oren A. 1998; Biology of moderately halophilic aerobic bacteria. Microbiol Mol Biol Rev 62:504–544[PubMed]
    [Google Scholar]
  44. Ventosa A. 2006; Unusual micro-organisms from unusual habitats: hypersaline environments. In Prokaryotic Diversity: Mechanisms and Significance pp 223–254 Edited by Logan N. A., Lappin-Scott H. M., Oyston P. C. F. Cambridge: Cambridge University Press; [CrossRef]
    [Google Scholar]
  45. Wang X., Xue Y., Ma Y. 2011; Streptohalobacillus salinus gen. nov., sp. nov., a moderately halophilic, Gram-positive, facultative anaerobe isolated from subsurface saline soil. Int J Syst Evol Microbiol 61:1127–1132 [View Article][PubMed]
    [Google Scholar]
  46. Yang G., Zhou S. 2014; Sinibacillus soli gen. nov., sp. nov., a moderately thermotolerant member of the family Bacillaceae . Int J Syst Evol Microbiol 64:1647–1653 [View Article][PubMed]
    [Google Scholar]
  47. Yu Z., Wen J., Yang G., Liu J., Zhou S. 2015; Compostibacillus humi gen. nov., sp. nov., a member of the family Bacillaceae, isolated from sludge compost. Int J Syst Evol Microbiol 65:346–352 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001117
Loading
/content/journal/ijsem/10.1099/ijsem.0.001117
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error