1887

Abstract

A novel endophytic actinomycete, designated strain KK1-3, which formed single spores and long chains of spores (more than 10 spores) was isolated from surface-sterilized leaf collected from Ubon Ratchathani province, Thailand. The isolate contained -lysine, -diaminopimelic acid and hydroxyl diaminopimelic acid in the cell-wall peptidoglycan. The whole-cell sugars included glucose, mannose, rhamnose, ribose, galactose and xylose. The characteristic phospholipids were phosphatidylethanolamine, phosphatidylmethylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, phosphatidylinositol and phosphoglycolipids. The predominant menaquinones were MK-10(H), MK-10(H) and MK-10(H). The predominant cellular fatty acids were anteiso-C and iso-C. The G+C content of the genomic DNA was 71 mol%. Phylogenetic analysis using 16S rRNA gene sequences revealed that strain KK1-3 should be classified as representing a member of the genus . The similarity values of sequences between this strain and those of the closely related species, K11-0057 (99.0 %), K07-0523 (98.9 %), K09-0627 (98.6 %) and K11-0047 (98.1 %) were observed. The DNA–DNA hybridization result and some physiological and biochemical properties indicated that KK1-3 could be readily distinguished from its closest phylogenetic relatives. On the basis of these phenotypic and genotypic data, this strain represents a novel species, for which the name sp. nov. is proposed. The type strain is strain KK1-3 (=BCC 66360 =NBRC 110005).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001121
2016-08-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/8/2917.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001121&mimeType=html&fmt=ahah

References

  1. Arai T. 1975 Culture Media for Actinomycetes Tokyo, Japan: The Society for Actinomycetes;
    [Google Scholar]
  2. Collins M. D., Pirouz T., Goodfellow M., Minnikin D. E. 1977; Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 100:221–230 [View Article][PubMed]
    [Google Scholar]
  3. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229 [CrossRef]
    [Google Scholar]
  4. Felsenstein J. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376[PubMed] [CrossRef]
    [Google Scholar]
  5. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [View Article]
    [Google Scholar]
  6. Fitch W. M. 1972; Toward defining the course of evolution: minimum change for a species tree topology. Sys Zoo 20:406–416 [CrossRef]
    [Google Scholar]
  7. Gordon R. E., Barnett D. A., Handerhan J. E., Pang C. H. N. 1974; Nocardia coeliaca, Nocardia autotrophica, and the nocardin strain. Int J Syst Bacteriol 24:54–63 [CrossRef]
    [Google Scholar]
  8. Inahashi Y., Matsumoto A., Danbara H., Omura S., Takahashi Y. 2010; Phytohabitans suffuscus gen. nov., sp. nov., an actinomycete of the family Micromonosporaceae isolated from plant roots. Int J Syst Evol Microbiol 60:2652–2658 [View Article][PubMed]
    [Google Scholar]
  9. Inahashi Y., Matsumoto A., Omura S., Takahashi Y. 2012; Phytohabitans flavus sp. nov., Phytohabitans rumicis sp. nov. and Phytohabitans houttuyneae sp. nov., isolated from plant roots, and emended description of the genus Phytohabitans . Int J Syst Evol Microbiol 62:2717–2723 [View Article][PubMed]
    [Google Scholar]
  10. Kawamoto I., Oka T., Nara T. 1981; Cell wall composition of Micromonospora olivoasterospora, Micromonospora sagamiensis, and related organisms. J Bacteriol 146:527–534[PubMed]
    [Google Scholar]
  11. Kelly K. L. 1964 Inter-Society Color Council – National Bureau of Standard Color Name Charts Illustrated with Centroid Colors Washington, DC: US Government Printing Office;
    [Google Scholar]
  12. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H. et al. 2012; Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721 [View Article][PubMed]
    [Google Scholar]
  13. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120[PubMed] [CrossRef]
    [Google Scholar]
  14. Komagata K., Suzuki K. I. 1987; Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19:161–207 [CrossRef]
    [Google Scholar]
  15. Kämpfer P., Kroppenstedt R. M. 1996; Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 42:989–1005 [CrossRef]
    [Google Scholar]
  16. Lane D. J. 1991; 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics pp 115–148 Stackebrandt. E., Goodfellow M. Chichester: John Wiley & Sons;
    [Google Scholar]
  17. Lechevalier M. P., Lechevalier H. A. 1980; The chemotaxonomy of actinomycetes. In Actinomycete Taxonomy pp 227–291 Dietz. A., Thayer D. W. Arlington, VA: Society for Industrial Microbiology;
    [Google Scholar]
  18. Minnikin D. E., Alshamaony L., Goodfellow M. 1975; Differentiation of Mycobacterium, Nocardia, and related taxa by thin-layer chromatographic analysis of whole-organism methanolysates. J Gen Microbiol 88:200–204 [View Article][PubMed]
    [Google Scholar]
  19. Minnikin D. E., O’Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H. 1984; An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241 [CrossRef]
    [Google Scholar]
  20. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425[PubMed]
    [Google Scholar]
  21. Sasser M. 1990; Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Technical Note 101 Newark, DE: MIDI;
    [Google Scholar]
  22. Shirling E. B., Gottlieb D. 1966; Methods for characterization of Streptomyces species. Int J Syst Bacteriol 16:313–340 [CrossRef]
    [Google Scholar]
  23. Suriyachadkun C., Chunhametha S., Thawai C., Tamura T., Potacharoen W., Kirtikara K., Sanglier J. J. 2009; Plansotetraspora thailasndica sp. nov., isolated from soil in Thailand. Int J Syst Evol Microbiol 59:992–997 [View Article][PubMed]
    [Google Scholar]
  24. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128 [View Article]
    [Google Scholar]
  25. Tamaoka J. 1994; Determination of DNA base composition. In Chemical Methods in Prokaryotic Systematics pp 463–470 Goodfellow. M., O’Donnell A. G. Chichester: John Wiley & Sons;
    [Google Scholar]
  26. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S. 2013; mega6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729 [View Article][PubMed]
    [Google Scholar]
  27. Thawai C., Tanasupawat S., Itoh T., Suwanborirux K., Suzuki K.-I., Kudo T. 2005; Micromonospora eburnea sp. nov., isolated from a thai peat swamp forest. Int J Syst Evol Microbiol 55:417–422 [CrossRef]
    [Google Scholar]
  28. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [View Article][PubMed]
    [Google Scholar]
  29. Uchida K., Aida K. 1984; An improved method for the glycolate test for simple identification of acyl type of bacterial cell walls. J Gen Appl Microbiol 30:131–134 [CrossRef]
    [Google Scholar]
  30. Verlander C. P. 1992; Detection of horseradish peroxidase by colorimetry. In Nonisotopic DNA Probe Techniques pp 185–201 Edited by Kricka L. J. New York: Academic Press; [CrossRef]
    [Google Scholar]
  31. Waksman S. A. 1961 The Actinomycetes. Classification, Identification and Descriptions of Genera and Species vol. 2 Baltimore: Williams & Wilkins;
    [Google Scholar]
  32. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. et al. 1987; Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
  33. Williams S. T., Cross T., Booth C. 1971; Actinomycetes. In Methods in Microbiology vol. 4 pp 295–334 Edited by C. Booth. London: Academic Press;
    [Google Scholar]
  34. Xu P., Li W. J., Tang S. K., Zhang Y. Q., Chen G. Z., Chen H. H., Xu L. H., Jiang C. L. 2005; Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family 'Oxalobacteraceae' isolated from China. Int J Syst Evol Microbiol 55:1149–1153 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001121
Loading
/content/journal/ijsem/10.1099/ijsem.0.001121
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error