1887

Abstract

A Gram-stain-positive, coccoid, oxidase-negative, non-motile isolate from exhaust air of a pig barn, collected on 17 September 2014 and designated strain 140917-MRSA-09, was subjected to a comprehensive taxonomic investigation. A comparative analysis of the 16S rRNA gene sequence showed highest similarities to , and (all <97.8 %). The G+C content of the genomic DNA was 58.9 mol %. The quinone system consisted of the major menaquinones MK-8 and MK-7. The polar lipid profile of strain 140917-MRSA-09 contained the major lipids diphosphatidylglycerol and phosphatidylglycerol and moderate amounts of dimannosylglyceride and trimannosyldiacylglycerol. The polyamine pattern was composed of the major amines putrescine and spermidine. In the fatty acid profile, iso- and anteiso-branched acids predominated (anteiso-C, anteiso-C, iso-C). The strain showed a chemoheterotrophic metabolism and was able to grow aerobically well on nutrient-rich media at temperatures from 15–36 °C (weak at 42 °C), pH 5.5–9.5 and NaCl concentrations ranging from 0 to 7 % (w/v). Growth under anaerobic conditions was weak. Physiological traits as well as unique traits in the quinone pattern and the fatty acid pattern distinguished strain 140917-MRSA-09 from the most closely related species. All these data showed that strain 140917-MRSA-09 is a representative of a novel species of the genus , for which we propose the name sp. nov. The type strain is 140917-MRSA-09 (=LMG 29446=CCM 8669).

Keyword(s): aerolata , Rothia and taxonomy
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001153
2016-08-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/8/3102.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001153&mimeType=html&fmt=ahah

References

  1. Altenburgera P., Kämpferb P., Makristathisc A., Lubitza W., Bussea H. J. 1996; Classification of bacteria isolated from a medieval wall painting. Journal of Biotechnology 47:39–52 [CrossRef]
    [Google Scholar]
  2. Altenburger P., Kampfer P., Akimov V. N., Lubit W., Busse H.-J. 1997; Polyamine Distribution in Actinomycetes with Group B Peptidoglycan and Species of the Genera Brevibacterium, Corynebacterium, and Tsukamurella . Int J Syst Bacteriol 47:270–277 [CrossRef]
    [Google Scholar]
  3. Brosius J., Palmer M. L., Kennedy P. J., Noller H. F. 1978; Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli . PNAS 75:4801–4805[PubMed] [CrossRef]
    [Google Scholar]
  4. Busse H.-J., Auling G. 1988; Polyamine pattern as a chemotaxonomic marker within the proteobacteria . Syst Appl Microbiol 11:1–8 [View Article]
    [Google Scholar]
  5. Chou Y. J., Chou J. H., Lin K. Y., Lin M. C., Wei Y. H., Arun A. B., Young C. C., Chen W. M. 2008; Rothia terrae sp. nov. isolated from soil in Taiwan. Int J Syst Evol Microbiol 58:84–88 [View Article][PubMed]
    [Google Scholar]
  6. Collins M. D., Shah H. N. 1984; Fatty acid, menaquinone and polar lipid composition of Rothia dentocariosa. Arch Microbiol 137:247–249 [CrossRef]
    [Google Scholar]
  7. Collins M. D., Hutson R. A., Båverud V., Falsen E. 2000; Characterization of a Rothia-like organism from a mouse: description of Rothia nasimurium sp. nov. and reclassification of Stomatococcus mucilaginosus as Rothia mucilaginosa comb. nov. Int J Syst Evol Microbiol 50:1247–1251 [View Article][PubMed]
    [Google Scholar]
  8. Embley T. M., Goodfellow M., Minnikin D. E., O'Donnell A. G. 1984; Lipid and wall amino acid composition in the classification of Rothia dentocariosa . Zentralbl Bakteriol Mikrobiol Hyg A 257:285–295[PubMed]
    [Google Scholar]
  9. Fan Y., Jin Z., Tong J., Li W., Pasciak M., Gamian A., Liu Z., Huang Y. 2002; Rothia amarae sp. nov., from sludge of a foul water sewer. Int J Syst Evol Microbiol 52:2257–2260 [View Article][PubMed]
    [Google Scholar]
  10. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [CrossRef]
    [Google Scholar]
  11. Felsenstein J. 2005; PHYLIP (Phylogeny Inference Package) version 3.6. Distributed by the author. Department of Genome Sciences Seattle: University of Washington;
    [Google Scholar]
  12. Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. (editors) 1994 Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology;
    [Google Scholar]
  13. Georg L. K., Brown J. M. 1967; Rothia, gen. nov. an aerobic genus of the family Actinomycetaceae . Int J Syst Bacteriol 17:79–88 [CrossRef]
    [Google Scholar]
  14. Glaeser S. P., Falsen E., Martin K., Kämpfer P. 2013; Alicyclobacillus consociatus sp. nov., isolated from a human clinical specimen. Int J Syst Evol Microbiol 63:3623–3627 [View Article][PubMed]
    [Google Scholar]
  15. Gonzalez J. M., Saiz-Jimenez C. 2002; A fluorimetric method for the estimation of G+C mol% content in microorganisms by thermal denaturation temperature. Environ Microbiol 4:770–773[PubMed] [CrossRef]
    [Google Scholar]
  16. Gärtner A., Gessner A., Gromöller S., Klug K., Knust S., Jäckel U. 2016; Emissionen aus Schweinemastanlagen – Untersuchungen zur Zusammensetzung der Bakteriengemeinschaft und Antibiotikaresistenz. Gefahrstoffe- Reinhaltung Der Luft/Air Quality Control 1:31–38
    [Google Scholar]
  17. Jukes T. H., Cantor C. R. 1969; Evolution of the protein molecules. In Mammalian Protein Metabolism pp. 21–132 Edited by Munro H. N. New York: Academic Press; [CrossRef]
    [Google Scholar]
  18. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H. et al. 2012; Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721 [View Article][PubMed]
    [Google Scholar]
  19. Kämpfer P., Steiof M., Dott W. 1991; Microbiological characterization of a fuel-oil contaminated site including numerical identification of heterotrophic water and soil bacteria. Microb Ecol 21:227–251 [View Article][PubMed]
    [Google Scholar]
  20. Kämpfer P., Kroppenstedt R. M. 1996; Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 42:989–1005 [CrossRef]
    [Google Scholar]
  21. Li Y., Kawamura Y., Fujiwara N., Naka T., Liu H., Huang X., Kobayashi K., Ezaki T. 2004; Rothia aeria sp. nov., Rhodococcus baikonurensis sp. nov. and Arthrobacter russicus sp. nov., isolated from air in the Russian space laboratory Mir. Int J Syst Evol Microbiol 54:827–835 [View Article][PubMed]
    [Google Scholar]
  22. Liu Z. X., Yang L. L., Huang Y., Zhao H., Liu H., Tang S. K., Li W. J., Chen Y. G. 2013; Rothia marina sp. nov., isolated from an intertidal sediment of the South China Sea. Antonie van Leeuwenhoek 104:331–337 [View Article][PubMed]
    [Google Scholar]
  23. Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhukumar  , Buchner A., Lai T., Steppi S. et al. 2004; ARB: a software environment for sequence data. Nucleic Acids Res 32:1363–1371 [View Article][PubMed]
    [Google Scholar]
  24. Onishi M. 1949; Study on the actinomyces isolated from the deeper layer of carious dentine. J Dent Res 6:273–282
    [Google Scholar]
  25. Pruesse E., Peplies J., Glöckner F. O. 2012; SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 28:1823–1829 [View Article][PubMed]
    [Google Scholar]
  26. Schaal K. P. 1992; The genera Actinomyces, Arcanobacterium, and Rothia . In The Prokaryotes, 2nd Edn pp. 850–905 Edited by Balows A. , Truäper H. G. , Dworkin M. , Harder W. , Schleifer K.-H. . New York: Springer;
    [Google Scholar]
  27. Stackebrandt E., Rainey F. A., Ward-rainey N. L. 1997; Proposal for a new hierarchic classification system, Actinobacteria classis nov. Int J Syst Bacteriol 47:479–491 [CrossRef]
    [Google Scholar]
  28. Stamatakis A. 2006; RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690 [View Article][PubMed]
    [Google Scholar]
  29. Stolz A., Busse H. J., Kämpfer P. 2007; Pseudomonas knackmussii sp. nov. Int J Syst Evol Microbiol 57:572–576 [View Article][PubMed]
    [Google Scholar]
  30. Tindall B. J. 1990a; Lipid composition of Halobacterium lacusprofundi . FEMS Microbiology Letters 66:199–202 [CrossRef]
    [Google Scholar]
  31. Tindall B. J. 1990b; A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 13:128–130 [CrossRef]
    [Google Scholar]
  32. VDI 4257-2: 2011-9 Bioaerosols and biological agents - Emission measurement - Sampling of bioaerosols and separation in liquids
  33. Weisburg W. G., Barns S. M., Pelletier D. A., Lane D. J. 1991; 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703[PubMed]
    [Google Scholar]
  34. Xiong Z. J., Zhang J. L., Zhang D. F., Zhou Z. L., Liu M. J., Zhu W. Y., Zhao L. X., Xu L. H., Li W. J. 2013; Rothia endophytica sp. nov., an actinobacterium isolated from Dysophylla stellata (Lour.) Benth. Int J Syst Evol Microbiol 63:3964–3969 [View Article][PubMed]
    [Google Scholar]
  35. Yarza P., Richter M., Peplies J., Euzeby J., Amann R., Schleifer K. H., Ludwig W., Glöckner F. O., Rosselló-Móra R. 2008; The All-Species Living Tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. Syst Appl Microbiol 31:241–250 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001153
Loading
/content/journal/ijsem/10.1099/ijsem.0.001153
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error