Brevitalea aridisoli, B. deliciosa and Arenimicrobium luteum, three novel species of Acidobacteria subdivision 4 (class Blastocatellia) isolated from savanna soil and description of the novel family Pyrinomonadaceae Wüst, Pia K. and Foesel, Bärbel U. and Geppert, Alicia and Huber, Katharina J. and Luckner, Manja and Wanner, Gerhard and Overmann, Jörg,, 66, 3355-3366 (2016), doi = https://doi.org/10.1099/ijsem.0.001199, publicationName = Microbiology Society, issn = 1466-5026, abstract= Three novel strains of the phylum Acidobacteria (Ac_11_E3T, Ac_12_G8T and Ac_16_C4T) were isolated from Namibian semiarid savanna soils by a high-throughput cultivation approach using low-nutrient growth media. 16S rRNA gene sequence analysis placed all three strains in the order Blastocatellales of the class Blastocatellia ( Acidobacteria subdivision 4). However, 16S rRNA gene sequence similarities to their closest relative Pyrinomonas methylaliphatogenes K22T were ≤90 %. Cells of strains Ac_11_E3T, Ac_12_G8T and Ac_16_C4T were Gram-staining-negative and non-motile and divided by binary fission. Ac_11_E3T and Ac_16_C4T formed white colonies, while those of Ac_12_G8T were orange-yellowish. All three strains were aerobic chemoorganoheterotrophic mesophiles with a broad pH range for growth. All strains used a very limited spectrum of carbon and energy sources for growth, with a preference for complex proteinaceous substrates. The major respiratory quinone was MK-8. The major shared fatty acid was iso-C15 : 0. The DNA G+C contents of strains Ac_11_E3T, Ac_12_G8T and Ac_16_C4T were 55.9 mol%, 66.9 mol% and 54.7 mol%, respectively. Based on these characteristics, the two novel genera Brevitalea gen. nov. and Arenimicrobium gen. nov. are proposed, harboring the novel species Brevitalea aridisoli sp. nov. (Ac_11_E3T=DSM 27934T=LMG 28618T), Brevitalea deliciosa sp. nov. (Ac_16_C4T=DSM 29892T=LMG 28995T) and Arenimicrobium luteum sp. nov. (Ac_12_G8T=DSM 26556T=LMG 29166T), respectively. Since these novel genera are only distantly related to established families, we propose the novel family Pyrinomonadaceae fam. nov. that accommodates the proposed genera and the genus Pyrinomonas ( Crowe et al., 2014 )., language=, type=