1887

Abstract

Strains LPU83 and Or191 of the genus were isolated from the root nodules of alfalfa, grown in acid soils from Argentina and the USA. These two strains, which shared the same plasmid pattern, lipopolysaccharide profile, insertion-sequence fingerprint, 16S rRNA gene sequence and PCR-fingerprinting pattern, were different from reference strains representing species of the genus with validly published names. On the basis of previously reported data and from new DNA-DNA hybridization results, phenotypic characterization and phylogenetic analyses, strains LPU83 and Or191 can be considered to be representatives of a novel species of the genus , for which the name sp. nov. is proposed. The type strain of this species is LPU83 (=CECT 9014=LMG 29160), for which an improved draft-genome sequence is available.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001373
2016-11-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/11/4451.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001373&mimeType=html&fmt=ahah

References

  1. Althabegoiti M. J., López-García S. L., Piccinetti C., Mongiardini E. J., Pérez-Giménez J., Quelas J. I., Perticari A., Lodeiro A. R. 2008; Strain selection for improvement of Bradyrhizobium japonicum competitiveness for nodulation of soybean. FEMS Microbiol Lett 282:115–123 [View Article][PubMed]
    [Google Scholar]
  2. Beringer J. E. 1974; R factor transfer in Rhizobium leguminosarum. J Gen Microbiol 84:188–198 [View Article][PubMed]
    [Google Scholar]
  3. Bromfield E. S., Tambong J. T., Cloutier S., Prévost D., Laguerre G., Van Berkum P., Tran Thi T. V., Assabgui R., Barran L. R. 2010; Ensifer, Phyllobacterium and Rhizobium species occupy nodules of Medicago sativa (alfalfa) and Melilotus alba (sweet clover) grown at a Canadian site without a history of cultivation. Microbiology 156:505–520 [View Article][PubMed]
    [Google Scholar]
  4. Cleenwerck I., Vandemeulebroecke K., Janssens D., Swings J. 2002; Re-examination of the genus Acetobacter, with descriptions of Acetobacter cerevisiae sp. nov. and Acetobacter malorum sp. nov. Int J Syst Evol Microbiol 52:1551–1558 [View Article][PubMed]
    [Google Scholar]
  5. Darriba D., Taboada G. L., Doallo R., Posada D. 2012; jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9:772 [View Article][PubMed]
    [Google Scholar]
  6. Del Papa M. F., Balague L. J., Sowinski S. C., Wegener C., Segundo E., Abarca F. M., Toro N., Niehaus K., Pühler A. et al. 1999; Isolation and characterization of alfalfa-nodulating rhizobia present in acidic soils of central argentina and uruguay. Appl Environ Microbiol 65:1420–1427[PubMed]
    [Google Scholar]
  7. Del Papa M. F., Pistorio M., Balague L. J., Draghi W. O., Wegener C., Perticari A., Niehaus K., Lagares A. 2003; A microcosm study on the influence of pH and the host-plant on the soil persistence of two alfalfa-nodulating rhizobia with different saprophytic and symbiotic characteristics. Biol Fert Soils 39:112–116 [View Article]
    [Google Scholar]
  8. Eardly B. D., Hannaway D. B., Bottomley P. J. 1985; Characterization of rhizobia from ineffective rlfalfa nodules: ability to nodulate bean plants [Phaseolus vulgaris (L.) Savi.]. Appl Environ Microbiol 50:1422–1427[PubMed]
    [Google Scholar]
  9. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Evol Microbiol 39:224–229
    [Google Scholar]
  10. Glenn A. R., Dilworth M. J. 1994; The life of root nodule bacteria in the acidic underground. FEMS Microbiol Lett 123:1–9 [View Article]
    [Google Scholar]
  11. Goris J., Suzuki K.-i., Vos P. D., Nakase T., Kersters K. 1998; Evaluation of a microplate DNA-DNA hybridization method compared with the initial renaturation method. Can J Microbiol 44:1148–1153 [CrossRef]
    [Google Scholar]
  12. Guindon S., Gascuel O. 2003; A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704 [View Article][PubMed]
    [Google Scholar]
  13. Gyaneshwar P., Hirsch A. M., Moulin L., Chen W. M., Elliott G. N., Bontemps C., Estrada-de Los Santos P., Gross E., Dos Reis F. B. et al. 2011; Legume-nodulating betaproteobacteria: diversity, host range, and future prospects. Mol Plant Microbe Interact 24:1276–1288 [View Article][PubMed]
    [Google Scholar]
  14. Howieson J. G., Robson A. D., Abbott L. K. 1992; Acid-tolerant species of Medicago produce root exudates at low pH which induce the expression of nodulation genes in Rhizobium meliloti. Aust J Bot 19:287–296 [View Article]
    [Google Scholar]
  15. López-López A., Rogel M. A., Ormeño-Orrillo E., Martínez-Romero J., Martínez-Romero E. 2010; Phaseolus vulgaris seed-borne endophytic community with novel bacterial species such as Rhizobium endophyticum sp. nov. Syst Appl Microbiol 33:322–327 [View Article][PubMed]
    [Google Scholar]
  16. López-López A., Rogel-Hernández M. A., Barois I., Ortiz Ceballos A. I., Martínez J., Ormeño-Orrillo E., Martínez-Romero E. 2012; Rhizobium grahamii sp. nov., from nodules of Dalea leporina, Leucaena leucocephala and Clitoria ternatea, and Rhizobium mesoamericanum sp. nov., from nodules of Phaseolus vulgaris, siratro, cowpea and Mimosa pudica. Int J Syst Evol Microbiol 62:2264–2271 [View Article][PubMed]
    [Google Scholar]
  17. Martínez-Romero E., Segovia L., Mercante F. M., Franco A. A., Graham P., Pardo M. A. 1991; Rhizobium tropici, a novel species nodulating Phaseolus vulgaris L. beans and Leucaena sp. trees. Int J Syst Bacteriol 41:417–426 [View Article][PubMed]
    [Google Scholar]
  18. Michaud R., Lehman W. F., Rumbaugh M. D. 1988 World Distribution and Historical Development Madison, Wis: USA American Society of Agronomy;
    [Google Scholar]
  19. Mousavi S. A., Österman J., Wahlberg N., Nesme X., Lavire C., Vial L., Paulin L., De Lajudie P., Lindström K. 2014; Phylogeny of the RhizobiumAllorhizobiumAgrobacterium clade supports the delineation of Neorhizobium gen. nov. Syst Appl Microbiol 37:208–215 [CrossRef]
    [Google Scholar]
  20. Mousavi S. A., Willems A., Nesme X., De Lajudie P., Lindström K. 2015; Revised phylogeny of Rhizobiaceae: proposal of the delineation of Pararhizobium gen. nov., and 13 new species combinations. Syst Appl Microbiol 38:84–90 [View Article][PubMed]
    [Google Scholar]
  21. Noel K. D., Sanchez A., Fernandez L., Leemans J., Cevallos M. A. 1984; Rhizobium phaseoli symbiotic mutants with transposon Tn5 insertions. J Bacteriol 158:148–155[PubMed]
    [Google Scholar]
  22. Ormeño-Orrillo E., Servín-Garcidueñas L. E., Rogel M. A., González V., Peralta H., Mora J., Martínez-Romero J., Martínez-Romero E. 2015; Taxonomy of rhizobia and agrobacteria from the Rhizobiaceae family in light of genomics. Syst Appl Microbiol 38:287–291 [CrossRef]
    [Google Scholar]
  23. Peix A., Ramírez-Bahena M. H., Velázquez E., Bedmar E. J. 2014; Bacterial associations with legumes. Crit Rev in Plant Sci 34:17–42 [CrossRef]
    [Google Scholar]
  24. Reeve W., Ardley J., Tian R., Eshragi L., Yoon J. W., Ngamwisetkun P., Seshadri R., Ivanova N. N., Kyrpides N. C. 2015; A genomic encyclopedia of the root nodule bacteria: assessing genetic diversity through a systematic biogeographic survey. Stand Genomic Sci 10:14 [View Article][PubMed]
    [Google Scholar]
  25. Reeve W. G., Tiwari R. P., Dilworth M. J., Glenn A. R. 1993; Calcium affects the growth and survival of Rhizobium meliloti. Soc Sci Med 25:581–586 [View Article]
    [Google Scholar]
  26. Sadowsky M. J., Tully R. E., Cregan P. B., Keyser H. H. 1987; Genetic diversity in Bradyrhizobium japonicum serogroup 123 and its relation to genotype-specific nodulation of soybean. Appl Environ Microbiol 53:2624–2630[PubMed]
    [Google Scholar]
  27. Stajković-Srbinović O., De Meyer S. E., Miličić B., Delić D., Willems A. 2012; Genetic diversity of rhizobia associated with alfalfa in Serbian soils. Biol Fert Soils 48:531–545 [View Article]
    [Google Scholar]
  28. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. 2011; mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739 [View Article][PubMed]
    [Google Scholar]
  29. Tighe S. W., De Lajudie P., Dipietro K., Lindstrom K., Nick G., Jarvis B. D. 2000; Analysis of cellular fatty acids and phenotypic relationships of Agrobacterium, Bradyrhizobium, Mesorhizobium, Rhizobium and Sinorhizobium species using the sherlock microbial identification system. Int J Syst Evol Microbiol 50:787–801 [View Article][PubMed]
    [Google Scholar]
  30. Vincent J. M. 1970 A Manual for the Practical Study of the Root-Nodule Bacteria.:IBP Handbook No. 15 Oxford: Blackwell Scientific;
    [Google Scholar]
  31. Wegener C., Schröder S., Kapp D., Pühler A., Lopez E. S., Martínez-Abarca F., Toro N., Del Papa M. F., Balague L. J. et al. 2001; Genetic uniformity and symbiotic properties of acid-tolerant alfalfa-nodulating rhizobia isolated from dispersed locations throughout Argentina. Symbiosis 30:141–162
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001373
Loading
/content/journal/ijsem/10.1099/ijsem.0.001373
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error