- Home
- Publications
- International Journal of Systematic and Evolutionary Microbiology
- Volume 66, Issue 11
- Article

f Williamsia herbipolensis sp. nov., isolated from the phyllosphere of Arabidopsis thaliana
- Authors: Peter Kämpfer1 , Hans-Jürgen Busse2 , Hannes Horn3 , Usama Ramadan Abdelmohsen3,4 , Ute Hentschel5 , Stefanie P. Glaeser1
-
- VIEW AFFILIATIONS
-
1 1Institut für Angewandte Mikrobiologie, Justus-Liebig-Universität Giessen, D-35392 Giessen, Germany 2 2Institut für Mikrobiologie, Veterinärmedizinische Universität Wien, A-1210 Wien, Austria 3 3Department of Botany II, Julius-von-Sachs Institute for Biosciences, University of Würzburg, D-97082 Würzburg, Germany 4 4Faculty of Pharmacy, Department of Pharmacognosy, University of Minia, 61519 Minia, Egypt 5 5GEOMAR Helmholtz Centre for Ocean Research, RD3 Marine Microbiology and Christian-Albrechts University of Kiel, Düsternbrooker Weg 20, D-24105 Kiel, Germany
- Correspondence Peter Kämpfer [email protected]
- First Published Online: 01 November 2016, International Journal of Systematic and Evolutionary Microbiology 66: 4609-4613, doi: 10.1099/ijsem.0.001398
- Subject: New taxa - Actinobacteria
- Received:
- Accepted:
- Cover date:




Williamsia herbipolensis sp. nov., isolated from the phyllosphere of Arabidopsis thaliana, Page 1 of 1
< Previous page | Next page > /docserver/preview/fulltext/ijsem/66/11/4609_ijsem001398-1.gif
-
A Gram-stain-positive, non-endospore-forming actinobacterium (ARP1T) was isolated from the phyllosphere of Arabidopsis thaliana. On the basis of 16S rRNA gene sequence phylogeny strain ARP1T was placed into the genus Williamsia and the closest related species were Williamsia phyllosphaerae (98.5 % 16S rRNA gene sequence similarity), Williamsia deligens (98.5 %), Williamsia maris (98.3 %) and Williamsia serinedens (98.2 %). Genome-based comparison indicated a clear distinction to the type strains of those species with pairwise average nucleotide identities (ANI) between 76.4–78.4 %. The quinone system of strain ARP1T consisted predominantly of menaquinones MK-9(H2), MK-7(H2) and MK-8(H2), and the polar lipid profile contained the major compound diphosphatidylglycerol, and moderate amounts of phosphatidylethanolamine, phosphatidylglycerol and numerous unidentified lipids. Mycolic acids were present. These chemotaxonomic traits and the major fatty acids, which were C16 : 1ω7c, C16 : 0, C18 : 0, C18 : 1ω9c and tuberculostearic acid supported the affiliation of strain ARP1T to the genus Williamsia . Genotypic, physiological and biochemical testing revealed clear differences of strain ARP1T to the most closely related species of the genus Williamsia . Therefore strain ARP1T represents a novel species of this genus, for which the name Williamsia herbipolensis sp. nov. is proposed. The type strain is ARP1T (=DSM 46872T=LMG 28679T).
-
The GenBank/EMBL/DDBJ accession number of the 16S rRNA gene sequences of strain ARP1T is KP676047. The Whole Genome Shotgun (WGS) project number of strain ARP1T in Genbank is BioProject PRJNA272726 with accession number JXYP00000000. The locus tag of the 16S rRNA gene sequence is Ga0077739_144.
- Keyword(s): New species, Williamsia, Williamsia herbipolensis sp. nov.
-
Abbreviation: ANI average nucleotide identity
© 2016 IUMS | Published by the Microbiology Society
-
Altenburger P., Kämpfer P., Makristathis A., Lubitz W., Busse H.-J..( 1996;). Classification of bacteria isolated from a medieval wall painting. . J Biotechnol47:39––52. [CrossRef]
-
Brosius J., Dull T. J., Sleeter D. D., Noller H. F..( 1978;). Gene organization and primary structure of a ribosomal RNA operon from Escherichia coli. . J Mol Biol148:107––127. [CrossRef]
-
Collins M. D., Goodfellow M., Minnikin D. E..( 1982;). A survey of the structures of mycolic acids in Corynebacterium and related taxa. . J Gen Microbiol128:129––149. [CrossRef][PubMed]
-
Felsenstein J..( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution39:783––791. [CrossRef]
-
Frischmann A., Knoll A., Hilbert F., Zasada A. A., Kampfer P., Busse H.-J..( 2012;). Corynebacterium epidermidicanis sp. nov., isolated from skin of a dog. . Int J Syst Evol Microbiol62:2194––2200. [CrossRef][PubMed]
-
Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R..( (editors)) ( 1994;). Methods for General and Molecular Bacteriology. Washington, DC:: American Society for Microbiology;.
-
Goris J., Konstantinidis K. T., Klappenbach J. A., Coenye T., Vandamme P., Tiedje J. M..( 2007;). DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. . Int J Syst Evol Microbiol57:81––91. [CrossRef][PubMed]
-
Hasegawa M., Kishino H., Yano T..( 1985;). Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. . J Mol Evol22:160––174. [CrossRef][PubMed]
-
Horn H., Keller A., Hildebrandt U., Kämpfer P., Riederer M., Hentschel U..( 2016;). Draft genome of the Arabidopsis thaliana phyllosphere bacterium, Williamsia sp. ARP1. . Stand Genomic Sci11:8. [CrossRef][PubMed]
-
Jones A. L., Payne G. D., Goodfellow M..( 2010;). Williamsia faeni sp. nov., a novel actinomycete isolated from a hay meadow. . Int J Syst Evol Microbiol60:2548––2551. [CrossRef][PubMed]
-
Jukes T. H., Cantor C. R..( 1969;). Evolution of the protein molecules. . In Mammalian Protein Metabolism, 21––132. Edited by Munro H. N.. New York:: Academic Press;.[CrossRef]
-
Kämpfer P., Kroppenstedt R. M..( 1996;). Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. . Can J Microbiol42:989––1005. [CrossRef]
-
Kämpfer P., Kroppenstedt R. M..( 2004;). Pseudonocardia benzenivorans sp. nov. . Int J Syst Evol Microbiol54:749––751. [CrossRef][PubMed]
-
Kämpfer P., Steiof M., Dott W..( 1991;). Microbiological characterization of a fuel-oil contaminated site including numerical identification of heterotrophic water and soil bacteria. . Microb Ecol21:227––251. [CrossRef][PubMed]
-
Kämpfer P., Andersson M. A., Rainey F. A., Kroppenstedt R. M., Salkinoja-Salonen M..( 1999;). Williamsia muralis gen. nov., sp. nov., isolated from the indoor environment of a children's day care centre. . Int J Syst Bacteriol49:681––687. [CrossRef][PubMed]
-
Kämpfer P., Wellner S., Lohse N., Lodders N., Martin K..( 2011;). Williamsia phyllosphaerae sp. nov., isolated from the surface of Trifolium repens leaves. . Int J Syst Evol Microbiol61:2702––2705. [CrossRef][PubMed]
-
Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H. et al.( 2012;). Introducing EzTaxon: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol62:716––721. [CrossRef][PubMed]
-
Kyrpides N. C., Woyke T., Eisen J. A., Garrity G., Lilburn T. G., Beck B. J., Whitman W. B., Hugenholtz P., Klenk H. P..( 2014;). Genomic encyclopedia of type strains, phase I: the one thousand microbial genomes (KMG-I) project. . Stand Genomic Sci9:1278––1284. [CrossRef][PubMed]
-
Ludwig W., Strunk O., Westram R., Richter L., Meier H., Buchner A., Lai T., Steppi S., Yadhu K. et al.( 2004;). ARB: a software environment for sequence data. . Nucleic Acids Res32:1363––1371. [CrossRef][PubMed]
-
Pathom-aree W., Nogi Y., Sutcliffe I. C., Ward A. C., Horikoshi K., Bull A. T., Goodfellow M..( 2006;). Williamsia marianensis sp. nov., a novel actinomycete isolated from the Mariana Trench. . Int J Syst Evol Microbiol56:1123––1126. [CrossRef][PubMed]
-
Pruesse E., Peplies J., Glockner F. O..( 2012;). SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. . Bioinformatics28:1823––1829. [CrossRef][PubMed]
-
Richter M., Rossello-Mora R..( 2009;). Shifting the genomic gold standard for the prokaryotic species definition. . Proc Natl Acad Sci U S A106:19126––19131. [CrossRef]
-
Sazak A., Sahin N..( 2012;). Williamsia limnetica sp. nov., isolated from a limnetic lake sediment. . Int J Syst Evol Microbiol62:1414––1418. [CrossRef][PubMed]
-
Stach J. E. M., Maldonado L. A., Ward A. C., Bull A. T., Goodfellow M..( 2004;). Williamsia maris sp. nov., a novel actinomycete isolated from the Sea of Japan. . Int J Syst Evol Microbiol54:191––194. [CrossRef][PubMed]
-
Stamatakis A..( 2006;). RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. . Bioinformatics22:2688––2690. [CrossRef]
-
Tindall B. J..( 1990a;). Lipid composition of Halobacterium lacusprofundi. . FEMS Microbiol Lett66:199––202. [CrossRef]
-
Tindall B. J..( 1990b;). A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. . Syst Appl Microbiol13:128––130. [CrossRef]
-
Yarza P., Richter M., Peplies J., Euzeby J., Amann R., Schleifer K. H., Ludwig W., Glöckner F. O., Rosselló-Móra R..( 2008;). The all-species living tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. . Syst Appl Microbiol31:241––250. [CrossRef][PubMed]
-
Yassin A. F., Hupfer H..( 2006;). Williamsia deligens sp. nov., a novel species of the genus Williamsia isolated from human blood. . Int J Syst Evol Microbiol56:193––197.[CrossRef]
-
Yassin A. F., Young C. C., Lai W. A., Hupfer H., Arun A. B., Shen F. T., Rekha P. D., Ho M. J..( 2007;). Williamsia serinedens sp. nov., isolated from an oil-contaminated soil. . Int J Syst Evol Microbiol57:558––561. [CrossRef][PubMed]
-
Zhi X. Y., Li W.-J., Stackebrandt E..( 2009;). An update of the structure and 16S rRNA gene sequence-based definition of higher ranks of the class Actinobacteria, with the proposal of two new suborders and four new families and emended descriptions of the existing higher taxa. . Int J Syst Evol Microbiol59:589––608. [CrossRef][PubMed]

Supplementary Data
Data loading....

Article metrics loading...

Full text loading...
Author and Article Information
-
This Journal
/content/journal/ijsem/10.1099/ijsem.0.001398dcterms_title,dcterms_subject,pub_serialTitlepub_serialIdent:journal/ijsem AND -contentType:BlogPost104 -
Other Society Journals
/content/journal/ijsem/10.1099/ijsem.0.001398dcterms_title,dcterms_subject-pub_serialIdent:journal/ijsem AND -contentType:BlogPost104 -
PubMed
-
Google Scholar
Figure data loading....