- Home
- Publications
- International Journal of Systematic and Evolutionary Microbiology
- Volume 66, Issue 11
- Article

f Pseudomonas turukhanskensis sp. nov., isolated from oil-contaminated soils
- Authors: Tatiana Y. Korshunova1 , Martha-Helena Ramírez-Bahena2,3 , Sergey P. Chetverikov1 , Jose M. Igual2,3 , Álvaro Peix2,3 , Oleg Loginov1
-
- VIEW AFFILIATIONS
-
1 1Laboratory of Biologically Active Agents, Ufa Institute of Biology of the Russian Academy of Sciences, Ufa, Russia 2 2Instituto de Recursos Naturales y Agrobiología, IRNASA-CSIC, Salamanca, Spain 3 3Unidad Asociada Grupo de Interacción Planta-Microorganismo Universidad de Salamanca-IRNASA (CSIC), Salamanca, Spain
- Correspondence Álvaro Peix [email protected]
- First Published Online: 01 November 2016, International Journal of Systematic and Evolutionary Microbiology 66: 4657-4664, doi: 10.1099/ijsem.0.001406
- Subject: New taxa - Proteobacteria
- Received:
- Accepted:
- Cover date:




Pseudomonas turukhanskensis sp. nov., isolated from oil-contaminated soils, Page 1 of 1
< Previous page | Next page > /docserver/preview/fulltext/ijsem/66/11/4657_ijsem001406-1.gif
-
A bacterial strain named IB1.1T was isolated in a screening of hydrocarbon-degrading bacteria from oil-contaminated soils on the territory of the Turukhansk District of Krasnoyarsk Krai, East Siberia, Russia. The 16S rRNA gene sequence had 98.7 % identity with respect to the closest phylogenetic relative, Pseudomonas granadensis F-278,770T, and the next most closely related species with 98.6 % similarity was Pseudomonas punonensis , suggesting that IB1.1T should be classified within the genus Pseudomonas . The analysis of housekeeping genes rpoB, rpoD and gyrB showed similarities lower than 90 % in all cases with respect to the closest relatives, confirming its phylogenetic affiliation. The strain showed a polar flagellum. The respiratory quinone was Q9. The major fatty acids were 16 : 1ω7c/16 : 1ω6c (summed feature 3), 18 : 1ω7c and 16 : 0. The strain was oxidase- and catalase-positive, but the arginine dihydrolase system was not present. Nitrate reduction, urease and β–galactosidase production, and aesculin hydrolysis were negative. The temperature range for growth was 4–34 °C, and the strain could grow at pH 11. The DNA G+C content was 58.5 mol%. DNA–DNA hybridization results showed values of less than 30 % relatedness with respect to the type strains of the eight most closely related species. Therefore, the dataset of genotypic, phenotypic and chemotaxonomic data support the classification of strain IB1.1T into a novel species of the genus Pseudomonas , for which the name Pseudomonas turukhanskensis sp. nov. is proposed. The type strain is IB1.1T (=VKM B-2935T=CECT 9091T).
-
The GenBank/EMBL/DDBJ accession numbers for the 16S rRNA gene, rpoD, rpoB and gyrB sequences of strain IB1.1T are KP306892, LT219438, LT219439 and LT219440, respectively.
-
Two supplementary figures and one supplementary table are available with the online Supplementary Material.
- Keyword(s): taxonomy, Pseudomonas, Russia, oil-contaminated soil, Turukhansk District
-
Abbreviations: ML maximum-likelihood NJ neighbour-joining
© 2016 IUMS | Published by the Microbiology Society
-
Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J..( 1990;). Basic local alignment search tool. . J Mol Biol215:403––410. [CrossRef]
-
Andersen S. M., Johnsen K., Sorensen J., Nielsen P., Jacobsen C. S..( 2000;). Pseudomonas frederiksbergensis sp. nov., isolated from soil at a coal gasification site. . Int J Syst Evol Microbiol50:1957––1964. [CrossRef]
-
Bolshakova A. V., Kiselyova O. I., Filonov A. S., Frolova O. Yu., Lyubchenko Yu. L., Yaminsky I. V..( 2001;). Comparative studies of bacteria with an atomic force microscopy operating in different modes. . Ultramicroscopy86:121––128. [CrossRef][PubMed]
-
Bolshakova A. V., Kiselyova O. I., Yaminsky I. V..( 2004;). Microbial surfaces investigated using atomic force microscopy. . Biotechnol Prog20:1615––1622. [CrossRef][PubMed]
-
Chun J., Goodfellow M..( 1995;). A phylogenetic analysis of the genus Nocardia with 16S rRNA gene sequences. . Int J Syst Bacteriol45:240––245. [CrossRef][PubMed]
-
Clark L. L., Dajcs J. J., McLean C. H., Bartell J. G., Stroman D. W..( 2006;). Pseudomonas otitidis sp. nov., isolated from patients with otic infections. . Int J Syst Evol Microbiol56:709––714. [CrossRef][PubMed]
-
Collins M. D..( 1985;). Analysis of isoprenoid quinones. . In Methods in Microbiology,vol. 18 pp. 329––366. Edited by Gottschalk G.. London:: Academic Press;.
-
Collins M. D., Jones D..( 1981;). Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implications. . Microbiol Rev45:316––354.
-
Doetsch R. N..( 1981;). Determinative methods of light microscopy. . In Manual of Methods for General Bacteriology, pp. 21––33. Edited by Gerdhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips G. B.. Washington:: American Society for Microbiology;.
-
Ezaki T., Hashimoto Y., Yabuchi E..( 1989;). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. . Int J Syst Bacteriol39:224––229. [CrossRef]
-
Gupta S. K., Kumari R., Prakash O., Lal R..( 2008;). Pseudomonas panipatensis sp. nov., isolated from an oil-contaminated site. . Int J Syst Evol Microbiol58:1339––1345. [CrossRef]
-
Hildebrand D. C., Palleroni N. J., Hendson M., Toth J., Johnson J. L..( 1994;). Pseudomonas flavescens sp. nov., isolated from walnut blight cankers. . Int J Syst Bacteriol44:410––415. [CrossRef][PubMed]
-
Hirota K., Yamahira K., Nakajima K., Nodasaka Y., Okuyama H., Yumoto I..( 2011;). Pseudomonas toyotomiensis sp. nov., a psychrotolerant facultative alkaliphile that utilizes hydrocarbons. . Int J Syst Evol Microbiol61:1842––1848. [CrossRef]
-
Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H. et al.( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol62:716––721. [CrossRef][PubMed]
-
Kimura M..( 1980;). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol16:111––120. [CrossRef]
-
King E. O., Ward M. K., Raney D. E..( 1954;). Two simple media for the demonstration of pyocyanin and fluorescein. . J Lab Clin Med44:301––307.
-
Korshunova T. Y., Sabirov A. A., Chetverikov S. P., Bakaeva M. D., Loginov O. N..( 2012;). Mikroorganizmy razlagayushchie neftyanye uglevodorody pri ponizhennoy temperature [Microorganisms decomposing oil hydrocarbons at low temperatures]. . Izvestiya Ufimskogo nauchnogo tsentra RAN – Bulletin of the RAS Ufa Scientific Centre3:76––82. (In Russian).
-
Lang E., Burghartz M., Spring S., Swiderski J., Sproeer C..( 2010;). Pseudomonas benzenivorans sp. nov. and Pseudomonas saponiphila sp. nov., represented by xenobiotics degrading type strains. . Curr Microbiol60:85––91. [CrossRef]
-
Lee D.-H., Moon S.-R., Park Y.-H., Kim J.-H., Kim H., Parales R. E., Kahng H.-Y..( 2010;). Pseudomonas taeanensis sp. nov., isolated from a crude oil-contaminated seashore. . Int J Syst Evol Microbiol60:2719––2723. [CrossRef]
-
Lin S.-Y., Hameed A., Liu Y.-C., Hsu Y.-H., Lai W.-A., Chen W.-M., Shen F.-T., Young C.-C..( 2013;). Pseudomonas sagittaria sp. nov., a siderophore-producing bacterium isolated from oil-contaminated soil. . Int J Syst Evol Microbiol63:2410––2417. [CrossRef]
-
Mandel M., Mamur J..( 1968;). Use of ultraviolet absorbance temperature profile for determining the guanine plus cytosine content of DNA. . Methods Enzymol12B:195––206.[CrossRef]
-
Mulet M., Bennasar A., Lalucat J., García-Valdés E..( 2009;). An rpoD-based PCR procedure for the identification of Pseudomonas species and for their detection in environmental samples. . Mol Cell Probes23:140––147. [CrossRef]
-
Mulet M., Lalucat J., García-Valdés E..( 2010;). DNA sequence-based analysis of the Pseudomonas species. . Environ Microbiol12:1513––1530.
-
Mulet M., Gomila M., Lemaitre B., Lalucat J., García-Valdés E..( 2012;). Taxonomic characterisation of Pseudomonas strain L48 and formal proposal of Pseudomonas entomophila sp. nov. . Syst. Appl. Microbiol35:145––149. [CrossRef]
-
Palleroni N. J..( 2005;). Genus I. Pseudomonas Migula 1894, 237AL (Nom. Cons., Opin. 5 of the Jud. Comm. 1952, 121). . In Bergey’s Manual of Systematic Bacteriology, , 2nd edn.,vol. 2, part B pp. 323––379. Edited by Boone D. R., Brenner D. J., Castenholz R. W., Garrity G. M., Krieg N. R., Staley J. T.. New York:: Springer;.
-
Pascual J., García-López M., Bills G. F., Genilloud O..( 2015;). Pseudomonas granadensis sp. nov., a new bacterial species isolated from the Tejeda, Almijara and Alhama Natural Park, Granada, Spain. . Int J Syst Evol Microbiol65:625––632. [CrossRef]
-
Peix A., Berge O., Rivas R., Abril A., Velázquez E..( 2005;). Pseudomonas argentinensis sp. nov., a novel yellow pigment-producing bacterial species, isolated from rhizospheric soil in Cordoba, Argentina. . Int J Syst Evol Microbiol55:1107––1112. [CrossRef][PubMed]
-
Ramos E., Ramírez-Bahena M. H., Valverde A., Velázquez E., Zúñiga D., Velezmoro C., Peix A..( 2013;). Pseudomonas punonensis sp. nov., a novel species isolated from grasses in Puno region (Peru). . Int J Syst Evol Microbiol63:1834––1839.[CrossRef]
-
Ramírez-Bahena M. H., Cuesta M. J., Tejedor C., Igual J. M., Fernández-Pascual M., Peix Á..( 2015;). Pseudomonas endophytica sp. nov., isolated from stem tissue of Solanum tuberosum in Spain. . Int J Syst Evol Microbiol65:2110––2117. [CrossRef][PubMed]
-
Rivas R., García-Fraile P., Mateos P. F., Martínez-Molina E., Velázquez E..( 2007;). Characterization of xylanolytic bacteria present in the bract phyllosphere of the date palm Phoenix dactylifera. . Lett Appl Microbiol44:181––187. [CrossRef]
-
Rogers J. S., Swofford D. L..( 1998;). A fast method for approximating maximum likelihoods of phylogenetic trees from nucleotide sequences. . Syst Biol47:77––89.[CrossRef]
-
Saha R., Spröer C., Beck B., Bagley S..( 2010;). Pseudomonas oleovorans subsp. lubricantis subsp. nov., and reclassification of Pseudomonas pseudoalcaligenes ATCC 17440T as later synonym of Pseudomonas oleovorans ATCC 8062 T. . Curr Microbiol60:294––300. [CrossRef][PubMed]
-
Saitou N., Nei M..( 1987;). A neighbour-joining method: a new method for reconstructing phylogenetics trees. . Mol Biol Evol4:406––425.
-
Sanchez D., Mulet M., Rodriguez A. C., David Z., Lalucat J., Garcia-Valdes E..( 2014;). Pseudomonas aestusnigri sp. nov., isolated from crude oil-contaminated intertidal sand samples after the Prestige oil spill. . Syst Appl Microbiol37:89––94. [CrossRef]
-
Sasser M..( 1990;). Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, , MIDI Technical Note 101.. Newark, DE:: MIDI Inc;.
-
Tamaoka J., Katayama-Fujimura Y., Kuraishi H..( 1983;). Analysis of bacterial menaquinone mixtures by high performance liquid chromatography. . J Appl Bacteriol54:31––36. [CrossRef]
-
Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S..( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol28:2731––2739. [CrossRef][PubMed]
-
Tayeb L., Ageron E., Grimont F., Grimont P. A. D..( 2005;). Molecular phylogeny of the genus Pseudomonas based on rpoB sequences and application for the identification of isolates. . Res Microbiol156:763––773. [CrossRef][PubMed]
-
Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G..( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res25:4876––4882. [CrossRef][PubMed]
-
Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. et al.( 1987;). Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol37:463––464. [CrossRef]
-
Willems A., Doignon-Bourcier F., Goris J., Coopman R., de Lajudie P., De Vos P., Gillis M..( 2001;). DNA-DNA hybridization study of Bradyrhizobium strains. . Int J Syst Evol Microbiol51:1315––1322. [CrossRef][PubMed]
-
Xiao Y. P., Hui W., Wang Q., Roh S. W., Shi X. Q., Shi J. H., Quan Z. X..( 2009;). Pseudomonas caeni sp. nov., a denitrifying bacterium isolated from the sludge of an anaerobic ammonium-oxidizing bioreactor. . Int J Syst Evol Microbiol59:2594––2598. [CrossRef][PubMed]
-
Yamamoto S., Harayama S..( 1998;). Phylogenetic relationships of Pseudomonas putida strains deduced from the nucleotide sequences of gyrB, rpoD and 16S rRNA genes. . Int J Syst Bacteriol48:813––819. [CrossRef][PubMed]

Supplementary Data
Data loading....

Article metrics loading...

Full text loading...
Author and Article Information
-
This Journal
/content/journal/ijsem/10.1099/ijsem.0.001406dcterms_title,dcterms_subject,pub_serialTitlepub_serialIdent:journal/ijsem AND -contentType:BlogPost104 -
Other Society Journals
/content/journal/ijsem/10.1099/ijsem.0.001406dcterms_title,dcterms_subject-pub_serialIdent:journal/ijsem AND -contentType:BlogPost104 -
PubMed
-
Google Scholar
Figure data loading....