- Home
- Publications
- International Journal of Systematic and Evolutionary Microbiology
- Volume 66, Issue 11
- Article

f Micromonospora profundi sp. nov., isolated from deep marine sediment
- Authors: Aysel Veyisoglu1 , Lorena Carro2 , Demet Cetin3 , Kiymet Guven4 , Cathrin Spröer5 , Gabriele Pötter5 , Hans-Peter Klenk2 , Nevzat Sahin6,† , Michael Goodfellow2,†
-
- VIEW AFFILIATIONS
-
1 1Department of Bioengineering, Faculty of Engineering and Architecture, Sinop University, Nasuhbasoglu-Sinop 57000, Turkey 2 2School of Biology, Newcastle University, Ridley Building, Newcastle upon Tyne, NE1 7RU, UK 3 3Science Teaching Programme, Gazi Faculty of Education, Gazi University, Ankara, Turkey 4 4Anadolu University, Faculty of Science, Biology Department, Eskisehir 26470, Turkey 5 5Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, Braunschweig 38124, Germany 6 6Department of Biology, Faculty of Art and Science, Ondokuz Mayis University, Kurupelit-Samsun 55139, Turkey
- Correspondence Nevzat Sahin [email protected]
- First Published Online: 01 November 2016, International Journal of Systematic and Evolutionary Microbiology 66: 4735-4743, doi: 10.1099/ijsem.0.001419
- Subject: New taxa - Actinobacteria
- Received:
- Accepted:
- Cover date:




Micromonospora profundi sp. nov., isolated from deep marine sediment, Page 1 of 1
< Previous page | Next page > /docserver/preview/fulltext/ijsem/66/11/4735_ijsem001419-1.gif
-
A novel actinobacterial strain, designated DS3010T, was isolated from a Black Sea marine sediment and characterized using a polyphasic approach. The strain was shown to have chemotaxonomic, morphological and phylogenetic properties consistent with classification as representing a member of the genus Micromonospora . Comparative 16S rRNA gene sequence studies showed that the strain was most closely related to the type strains of Micromonospora saelicesensis (99.5 %), Micromonospora chokoriensis (99.4 %) and Micromonospora violae (99.3 %). Similarly, a corresponding analysis based on partial gyrB gene sequences showed that it formed a distinct phyletic branch in a subclade that included the type strains of Micromonosporazamorensis, ‘ Micromonospora zeae ’, ‘ Micromonospora jinlongensis ’, M. saelicesensis and Micromonospora lupini . DS3010T was distinguished from its closest phylogenetic neighbours by low levels of DNA–DNA relatedness and by a combination of chemotaxonomic and phenotypic properties. On the basis of these data, it is proposed that the isolate should be assigned to the genus Micromonospora as Micromonospora profundi sp. nov. with isolate DS3010T (=DSM 45981T=KCTC 29243T) as the type strain.
-
†
These authors contributed equally to this work.
-
The GenBank/EMBL/DDBJ accession numbers for the 16S rRNA and gyrB gene sequences of Micromonospora profundi DS3010T (=DSM 45981T=KCTC 29243T) are KF494813 and KF818375, respectively.
-
One supplementary table and three supplementary figures are available with the online Supplementary Material.
- Keyword(s): Actinobacteria, polyphasic taxonomy, gyrB gene sequences, Micromonosporaprofundi sp. nov., 6S rRNA gene sequences
-
Abbreviation: A2pm diaminopimelic acid
© 2016 IUMS | Published by the Microbiology Society
-
Ara I., Kudo T..( 2007;). Two new species of the genus Micromonospora: Micromonospora chokoriensis sp. nov. and Micromonospora coxensis sp. nov., isolated from sandy soil. . J Gen Appl Microbiol53:29––37. [CrossRef][PubMed]
-
Carro L., Pukall R., Spröer C., Kroppenstedt R. M., Trujillo M. E..( 2012a;). Micromonospora cremea sp. nov. and Micromonospora zamorensis sp. nov., isolated from the rhizosphere of Pisum sativum. . Int J Syst Evol Microbiol62:2971––2977. [CrossRef][PubMed]
-
Carro L., Spröer C., Alonso P., Trujillo M. E..( 2012b;). Diversity of Micromonospora strains isolated from nitrogen fixing nodules and rhizosphere of Pisum sativum analyzed by multilocus sequence analysis. . Syst Appl Microbiol35:73––80. [CrossRef][PubMed]
-
Carro L., Riesco R., Spröer C., Trujillo M. E..( 2016;). Micromonospora luteifusca sp. nov. isolated from cultivated Pisum sativum. . Syst App Microb39:237––242. [CrossRef]
-
Cashion P., Holder-Franklin M. A., McCully J., Franklin M..( 1977;). A rapid method for the base ratio determination of bacterial DNA. . Anal Biochem81:461––466. [CrossRef][PubMed]
-
Chun J., Goodfellow M..( 1995;). A phylogenetic analysis of the genus Nocardia with 16S rRNA gene sequences. . Int J Syst Bacteriol45:240––245. [CrossRef][PubMed]
-
Collins M. D., Pirouz T., Goodfellow M., Minnikin D. E..( 1977;). Distribution of menaquinones in actinomycetes and corynebacteria. . J Gen Microbiol100:221––230. [CrossRef][PubMed]
-
De Ley J., Cattoir H., Reynaerts A..( 1970;). The quantitative measurement of DNA hybridization from renaturation rates. . Eur J Biochem12:143––153.[CrossRef]
-
Felsenstein J..( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol17:368––376. [CrossRef][PubMed]
-
Felsenstein J..( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution39:783––791. [CrossRef]
-
Gao R., Liu C., Zhao J., Jia F., Yu C., Yang L., Wang X., Xiang W..( 2014;). Micromonospora jinlongensis sp. nov., isolated from muddy soil in China and emended description of the genus Micromonospora. . Antonie Van Leeuwenhoek105:307––315. [CrossRef][PubMed]
-
Garcia L. C., Martínez-Molina E., Trujillo M. E..( 2010;). Micromonospora pisi sp. nov., isolated from root nodules of Pisum sativum. . Int J Syst Evol Microbiol60:331––337. [CrossRef][PubMed]
-
Genilloud O..( 2012a;). Order XI. Micromonosporales or. nov. . In Bergey’s Manual of Systematic Bacteriology, , 2nd edn.,vol. 5 The Actinobacteria, Part B, pp. 1035. Edited by Goodfellow M., Kämpfer P., Busse H. J., Trujillo M. E., Suzuki K. I., Ludwig W., Whitman W. B.. New York:: Springer;.
-
Genilloud O..( 2012b;). Family I. Micromonosporaceae Krasil’nikov 1938, 272AL emend. Zhi, Li and Stackebrandt 2009, 599. . In Bergey’s Manual of Systematic Bacteriology, , 2nd edn.,vol. 5 The Actinobacteria, Part B, pp. 1035––1038. Edited by Goodfellow M., Kämpfer P., Busse H. J., Trujillo M. E., Suzuki K. I., Ludwig W., Whitman W. B.. New York:: Springer;.
-
Genilloud O..( 2012c;). Genus I. Micromonospora Ørskov 1923, 156AL. . In Bergey’s Manual of Systematic Bacteriology, , 2nd edn.,vol. 5 The Actinobacteria, Part B , pp. 1039––1057. Edited by Goodfellow M., Kämpfer P., Busse H. J., Trujillo M. E., Suzuki K. I., Ludwig W., Whitman W. B.. New York:: Springer;.
-
Huss V. A., Festl H., Schleifer K. H..( 1983;). Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. . Syst Appl Microbiol4:184––192. [CrossRef][PubMed]
-
Jia F., Liu C., Zhou S., Li J., Shen Y., Guan X., Guo S., Gao M., Wang X., Xiang W..( 2015;). Micromonospora vulcania sp. nov., isolated from volcanic sediment. . Antonie Van Leeuwenhoek108:1383––1390. [CrossRef][PubMed]
-
Kämpfer P., Kroppenstedt R. M..( 1996;). Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. . Can J Microbiol42:989––1005. [CrossRef]
-
Kasai H., Tamura T., Harayama S..( 2000;). Intrageneric relationships among Micromonospora species deduced from gyrB-based phylogeny and DNA relatedness. . Int J Syst Evol Microbiol50:127––134. [CrossRef][PubMed]
-
Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H. et al.( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol62:716––721. [CrossRef][PubMed]
-
Kimura M..( 1980;). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol16:111––120. [CrossRef][PubMed]
-
Kirby B. M., Meyers P. R..( 2010;). Micromonospora tulbaghiae sp. nov., isolated from the leaves of wild garlic, Tulbaghia violacea. . Int J Syst Evol Microbiol60:1328––1333. [CrossRef][PubMed]
-
Kluge A. G., Farris J. S..( 1969;). Quantitative phyletics and the evolution of anurans. . Syst Zool18:1––32.[CrossRef]
-
Kroppenstedt R. M..( 1982;). Separation of bacterial menaquinones by HPLC using reverse phase (RP18) and a silver loaded ion exchanger. . J Liquid Chromatogr5:2359––2387.[CrossRef]
-
Kroppenstedt R. M., Goodfellow M..( 2006;). The family Thermomonosporaceae: Actinocorallia, Actinomadura, Spirillispora and Thermomonospora. . In Prokaryotes. Archaea and Bacteria: Firmicutes, Actinomycetes, , 3rd edn.,vol. 3 , pp. 682––724. Edited by Dworkin M., Falkow S., Schleifer K. H., Stackebrandt E.. New York:: Springer;.
-
Lechevalier M. P, Lechevalier H..( 1970;). Chemical composition as a criterion in the classification of aerobic actinomycetes. . Int J Syst Bacteriol20:435––443. [CrossRef]
-
Lechevalier M. P., De Bievre C., Lechevalier H..( 1977;). Chemotaxonomy of aerobic actinomycetes: phospholipid composition. . Biochem Syst Ecol5:249––260. [CrossRef]
-
Li C., Liu C., Zhao J., Zhang Y., Gao R., Zhang X., Yao M., Wang X., Xiang W..( 2014;). Micromonospora maoerensis sp. nov., isolated from a Chinese pine forest soil. . Antonie Van Leeuwenhoek105:451––459. [CrossRef][PubMed]
-
Lin Y. B., Fan M. C., Guo Y. Q., Di X. H., Dong D. H., Zhang X., Wei G. H..( 2015;). Micromonospora nickelidurans sp. nov., isolated from soil from a nickel-mining site. . Int J Syst Evol Microbiol65:4615––4620. [CrossRef][PubMed]
-
Mandel M., Marmur J..( 1968;). Use of ultraviolet absorbance-temperature profile for determining the guanine plus cytosine content of DNA. . Meth Enzymol12B:195––206.[CrossRef]
-
Matsumoto A., Kawaguchi Y., Nakashima T., Iwatsuki M., Ōmura S., Takahashi Y..( 2014;). Rhizocola hellebori gen. nov., sp. nov., an actinomycete of the family Micromonosporaceae containing 3,4-dihydroxydiaminopimelic acid in the cell-wall peptidoglycan. . Int J Syst Evol Microbiol64:2706––2711. [CrossRef][PubMed]
-
Minnikin D. E., O'Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H..( 1984;). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. . J Microbiol Method2:233––241. [CrossRef]
-
Ørskov J..( 1923;). Investigations Into the Morphology of the Ray Fungi. Copenhagen:: Levin and Munksgaard;.
-
Saitou N., Nei M..( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol4:406––425.[PubMed]
-
Sasser M..( 1990;). Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids. Technical Note, 101. Newark, DE:: MIDI Inc;.
-
Shen Y., Zhang Y., Liu C., Wang X., Zhao J., Jia F., Yang L., Yang D., Xiang W..( 2014;). Micromonospora zeae sp. nov., a novel endophytic actinomycete isolated from corn root (Zea mays L.). . J Antibiot67:739––743. [CrossRef][PubMed]
-
Shirling E. B., Gottlieb D..( 1966;). Methods for characterization of Streptomyces species. . Int J Syst Bacteriol16:313––340. [CrossRef]
-
Staneck J. L., Roberts G. D..( 1974;). Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. . Appl Microbiol28:226––231.[PubMed]
-
Tamura K., Stecher G., Peterson D., Filipski A., Kumar S..( 2013;). mega6: molecular evolutionary genetics analysis version 6.0. . Mol Biol Evol30:2725––2729. [CrossRef][PubMed]
-
Thawai C..( 2015;). Micromonospora costi sp. nov., isolated from a leaf of Costus speciosus. . Int J Syst Evol Microbiol65:1456––1461. [CrossRef][PubMed]
-
Thawai C., Kittiwongwattana C., Thanaboripat D., Laosinwattana C., Koohakan P., Parinthawong N..( 2016;). Micromonospora soli sp. nov., isolated from rice rhizosphere soil. . Antonie Van Leeuwenhoek109:449––456. [CrossRef][PubMed]
-
Trujillo M. E., Kroppenstedt R. M., Fernández-Molinero C., Schumann P., Martínez-Molina E..( 2007;). Micromonospora lupini sp. nov. and Micromonospora saelicesensis sp. nov., isolated from root nodules of Lupinus angustifolius. . Int J Syst Evol Microbiol57:2799––2804. [CrossRef][PubMed]
-
Uchida K., Kudo T., Suzuki K. I., Nakase T..( 1999;). A new rapid method of glycolate test by diethyl ether extraction, which is applicable to a small amount of bacterial cells of less than one milligram. . J Gen Appl Microbiol45:49––56. [CrossRef][PubMed]
-
Veyisoglu A., Carro L., Guven K., Cetin D., Spröer C., Schumann P., Klenk H. P., Goodfellow M., Sahin N..( 2016;). Micromonospora yasonensis sp. nov., isolated from a Black Sea sediment. . Antonie Van Leeuwenhoek109:1019––1028. [CrossRef][PubMed]
-
Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. et al.( 1987;). Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Evol Microbiol37:463––464.[CrossRef]
-
Zhang Y., Liu H., Zhang X., Wang S., Liu C., Yu C., Wang X., Xiang W..( 2014;). Micromonospora violae sp. nov., isolated from a root of Viola philippica Car. . Antonie Van Leeuwenhoek106:219––225. [CrossRef][PubMed]
-
Zhang L., Li L., Deng Z., Hong K..( 2015;). Micromonospora zhanjiangensis sp. nov., isolated from mangrove forest soil. . Int J Syst Evol Microbiol65:4880––4885. [CrossRef][PubMed]
-
Zhao J., Guo L., Liu C., Zhang Y., Guan X., Li J., Xu S., Xiang W., Wang X..( 2016;). Micromonospora lycii sp. nov., a novel endophytic actinomycete isolated from wolfberry root (Lycium chinense Mill). . J Antibiot69:153––158. [CrossRef][PubMed]

Supplementary Data
Data loading....

Article metrics loading...

Full text loading...
Author and Article Information
-
This Journal
/content/journal/ijsem/10.1099/ijsem.0.001419dcterms_title,dcterms_subject,pub_serialTitlepub_serialIdent:journal/ijsem AND -contentType:BlogPost104 -
Other Society Journals
/content/journal/ijsem/10.1099/ijsem.0.001419dcterms_title,dcterms_subject-pub_serialIdent:journal/ijsem AND -contentType:BlogPost104 -
PubMed
-
Google Scholar
Figure data loading....