1887

Abstract

A novel Gram-stain-positive, aerobic, endospore-forming, non-motile, rod-shaped bacterium (strain JC229) was isolated from a water sample collected from waterlogged alkaline soil. Strain JC229 was oxidase- and catalase-positive. Based on 16S rRNA gene sequence analysis, strain JC229 was identified as belonging to the genus of the phylum and was found to be most closely related to P4B (97.9 % similarity), X5B (97.2 %) and HS136 (96.6 %), and more distantly related to other members of the genus (<95.2 %). Strain JC229 was further identified to be distinctly related to the type strains of and (<26 % based on DNA–DNA hybridization and Δ of >5 °C). Strain JC229 grew optimally at pH 8 (range 5–11), at 35–40 °C (range 20–50 °C) and at a salinity of 3–5 % (range 0.5–24 %). The DNA G+C content was 40.2 mol%. Major cellular fatty acids of strain JC229 were anteiso-C, iso-C, anteiso-C and iso-C. The peptidoglycan contained -diaminopimelic acid as the diagnostic diamino acid. The predominant quinone system was menaquinone 7. Polar lipids of strain JC229 included diphosphatidylglycerol, phosphatidylglycerol and two unidentified lipids. On the basis of morphological, physiological, genetic, phylogenetic and chemotaxonomic analyses, strain JC229 should be assigned to a novel species of the genus , for which the name sp. nov. is proposed. The type strain is JC229 (=LMG 28999=KCTC 33726). It is also suggested to transfer to the genus as comb. nov.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001428
2016-11-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/11/4772.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001428&mimeType=html&fmt=ahah

References

  1. Amoozegar M. A., Sanchez-Porro C., Rohban R., Hajighasemi M., Ventosa A. 2009; Bacillus persepolensis sp. nov., a moderately halophilic bacterium from a hypersaline lake. Int J Syst Evol Microbiol 59:2352–2358 [View Article]
    [Google Scholar]
  2. Bagheri M., Didari M., Amoozegar M. A., Schumann P., Sánchez-Porro C., Mehrshad M., Ventosa A. 2012; Bacillus iranensis sp. nov., a moderate halophile from a hypersaline lake. Int J Syst Evol Microbiol 62:811–816 [View Article][PubMed]
    [Google Scholar]
  3. Begum M. A., Rahul K., Sasikala C., Ramana C. V. 2016; Lysinibacillus xyleni sp. nov., isolated from a bottle of xylene. Arch Microbiol 198:325–332 [View Article][PubMed]
    [Google Scholar]
  4. Cappuccino J. G., Sherman N. 1998 Microbiology – A Laboratory Manual, 5th edn. California: Benjamin/Cummings Science Publishing;
    [Google Scholar]
  5. Cohn F. 1872; Untersuchungen über Bakterien. Beitrage Zur Biologie Der Pflanzen Heft 2:127–224
    [Google Scholar]
  6. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142 [View Article][PubMed]
    [Google Scholar]
  7. Didari M., Amoozegar M. A., Bagheri M., Schumann P., Spröer C., Sánchez-Porro C., Ventosa A. 2012; Alteribacillus bidgolensis gen. nov., sp. nov., a moderately halophilic bacterium from a hypersaline lake, and reclassification of Bacillus persepolensis as Alteribacillus persepolensis comb. nov. Int J Syst Evol Microbiol 62:2691–2697 [View Article][PubMed]
    [Google Scholar]
  8. Gonzalez J. M., Saiz-Jimenez C. 2005; A simple fluorimetric method for the estimation of DNA–DNA relatedness between closely related microorganisms by thermal denaturation temperatures. Extremophiles 9:75–79 [View Article][PubMed]
    [Google Scholar]
  9. Kates M. 1972 Techniques of Lipidology New York: Elsevier; [CrossRef]
    [Google Scholar]
  10. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H. et al. 2012; Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721 [View Article][PubMed]
    [Google Scholar]
  11. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [View Article][PubMed]
    [Google Scholar]
  12. Komagata K., Suzuki K. 1987; Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19:161–208 [CrossRef]
    [Google Scholar]
  13. Logan N. A., Berge O., Bishop A. H., Busse H. J., De Vos P., Fritze S., Heyndrickx M., Kämpfer P., Rabinovitch L. et al. 2009; Proposed minimal standards for describing new taxa of aerobic, endospore-forming bacteria. Int J Syst Evol Microbiol 59:2114–2121 [View Article][PubMed]
    [Google Scholar]
  14. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 3:208–218 [View Article]
    [Google Scholar]
  15. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [View Article]
    [Google Scholar]
  16. Oren A., Duker S., Ritter S. 1996; The polar lipid composition of walsby's square bacterium. FEMS Microbiol Lett 138:135–140 [View Article]
    [Google Scholar]
  17. Rahul K., Sasikala Ch., Tushar L., Debadrita R., Ramana Ch. V. 2014; Alcanivorax xenomutans sp. nov., a hydrocarbonoclastic bacterium isolated from a shrimp cultivation pond. Int J Syst Evol Microbiol 64:3553–3558 [View Article][PubMed]
    [Google Scholar]
  18. Rhuland L. E., Work E., Denman R. F., Hoare D. S. 1955; The behavior of the isomers of α,ε-diaminopimelic acid on paper chromatograms. J Am Chem Soc 77:4844–4846 [View Article]
    [Google Scholar]
  19. Sasser M. 1990 Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids Newark, DE: MIDI Inc;
    [Google Scholar]
  20. Schaeffer A. B., Fulton M. D. 1933; A simplified method of staining endospores. Science 77:194 [CrossRef]
    [Google Scholar]
  21. Smibert R. M., Krieg N. R. 1981; General characterization. In Manual of Methods for General Bacteriology pp 409–443 Edited by Gerhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips G. B. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  22. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 44:846–849 [View Article]
    [Google Scholar]
  23. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S. 2013; mega6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729 [View Article][PubMed]
    [Google Scholar]
  24. Ventosa A., Quesada E., Rodriguez-Valera F., Ruiz-Berraquero F., Ramos-Cormenzana A. 1982; Numerical taxonomy of moderately halophilic gram-negative rods. J Gen Microbiol 128:1959–1968 [View Article]
    [Google Scholar]
  25. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore W. E. C., Murray R. G. E., Stackebrandt E. et al. 1987; Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 37:463–464 [CrossRef]
    [Google Scholar]
  26. Xie C., Yokota A. 2003; Phylogenetic analyses of Lampropedia hyalina based on the 16S rRNA gene sequence. J Gen Appl Microbiol 49:345–349 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001428
Loading
/content/journal/ijsem/10.1099/ijsem.0.001428
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error