1887

Abstract

Strain FC2004, a strictly anaerobic, extremely thermophilic heterotroph, was isolated from a hot spring in Thailand. Typical cells of strain FC2004 were rod shaped (0.5–0.6×1.1–2.5 µm) with an outer membrane swelling out over an end. Filaments (10–30 µm long) and membrane-bound spheroids containing two or more cells inside (3–8 µm in diameter) were observed. The temperature range for growth was 60–88°C (optimum 78–80°C), pH range was 6.5–8.5 (optimum pH 7.5) and NaCl concentration range was 0 to <5 g l (optimum 0.5 g l). S stimulated growth yield. SO and NO did not influence growth. Glucose, maltose, sucrose, fructose, cellobiose, CM-cellulose and starch were utilized for growth. The membrane was composed mainly of the saturated fatty acids C and C. The DNA G+C content was 45.8 mol%. The 16S rRNA gene sequence of strain FC2004 revealed highest similarity to species of the genus : DSM 9078 (97–96 %), AW-1 (96 %), CBS-1 (96 %), H21 (95 %), Rt17-B1 (95 %), 1445t (95 %) and AB39 (93 %). Phylogenetic analysis of 16S rRNA gene sequences and average nucleotide identity analysis suggested that strain FC2004 represented a novel species within the genus , for which the name sp. nov. is proposed. The type strain is FC2004 (=JCM 18757=ATCC BAA-2483).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001463
2016-12-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/12/5023.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001463&mimeType=html&fmt=ahah

References

  1. Andrews K. T., Patel B. K. 1996; Fervidobacterium gondwanense sp. nov., a new thermophilic anaerobic bacterium isolated from nonvolcanically heated geothermal waters of the Great Artesian Basin of Australia. Int J Syst Bacteriol 46:265–269 [View Article][PubMed]
    [Google Scholar]
  2. Askew E. F., Smith R.-K. 2005; Inorganic nonmetallic constitutuents. In Standard Methods for the Examination of Water and Wastewater pp. 4–174 Edited by Eaton A. D., Clesceri L. S., Rice E. W., Greenberg A. E. Linthicum, MD: Cadmus Professional Communications;
    [Google Scholar]
  3. Bhandari V., Gupta R. S. 2014; Molecular signatures for the phylum (class) Thermotogae and a proposal for its division into three orders (Thermotogales, Kosmotogales ord. nov. and Petrotogales ord. nov.) containing four families (Thermotogaceae, Fervidobacteriaceae fam. nov., Kosmotogaceae fam. nov. and Petrotogaceae fam. nov.) and a new genus Pseudothermotoga gen. nov. with five new combinations. Antonie van Leeuwenhoek 105:143–168 [CrossRef]
    [Google Scholar]
  4. Cai J., Wang Y., Liu D., Zeng Y., Xue Y., Ma Y., Feng Y. 2007; Fervidobacterium changbaicum sp. nov., a novel thermophilic anaerobic bacterium isolated from a hot spring of the Changbai Mountains, China. Int J Syst Evol Microbiol 57:2333–2336 [View Article][PubMed]
    [Google Scholar]
  5. Cuecas A., Portillo M. C., Kanoksilapatham W., Gonzalez J. M. 2014; Bacterial distribution along a 50 °C temperature gradient reveals a parceled out hot spring environment. Microb Ecol 68:729–739 [View Article][PubMed]
    [Google Scholar]
  6. Friedrich A. B., Antranikian G. 1996; Keratin degradation by Fervidobacterium pennavorans, a novel thermophilic anaerobic species of the order Thermotogales. Appl Environ Microbiol 62:2875–2882[PubMed]
    [Google Scholar]
  7. Goris J., Konstantinidis K. T., Klappenbach J. A., Coenye T., Vandamme P., Tiedje J. M. 2007; DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 57:81–91 [View Article][PubMed]
    [Google Scholar]
  8. Huber R., Woese C. R., Langworthy T. A., Kristjansson J. K., Stetter K. O. 1990; Fervidobacterium islandicum sp. nov., a new extremely thermophilic eubacterium belonging to the ‘Thermotogales’. Arch Microbiol 154:105–111 [View Article]
    [Google Scholar]
  9. Itoh T., Onishi M., Kudo T., Takashina T., Kato S., Sakamoto M., Ohkuma M., Iino T. 2016; Athalassotoga saccharophila gen. nov., sp. nov., isolated from an acidic terrestrial hot spring of Japan, and proposal of Mesoaciditogales ord. nov. and Mesoaciditogaceae fam. nov. in the phylum Thermotogae. Int J Syst Evol Microbiol 66:1045–1051 [View Article]
    [Google Scholar]
  10. Jeanthon C., Reysenbach A. L., L'Haridon S., Gambacorta A., Pace N. R., Glénat P., Prieur D. 1995; Thermotoga subterranea sp. nov., a new thermophilic bacterium isolated from a continental oil reservoir. Arch Microbiol 164:91–97 [View Article][PubMed]
    [Google Scholar]
  11. Kanoksilapatham W., Keawram P., Gonzalez J. M., Robb F. T. 2015; Isolation, characterization, and survival strategies of Thermotoga sp. strain PD524, a hyperthermophile from a hot spring in Northern Thailand. Extremophiles 19:853–861 [View Article][PubMed]
    [Google Scholar]
  12. Marur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5:109–118 [View Article][PubMed]
    [Google Scholar]
  13. Nam G. W., Lee D. W., Lee H. S., Lee N. J., Kim B. C., Choe E. A., Hwang J. K., Suhartono M. T., Pyun Y. R. 2002; Native-feather degradation by Fervidobacterium islandicum AW-1, a newly isolated keratinase-producing thermophilic anaerobe. Arch Microbiol 178:538–547 [View Article][PubMed]
    [Google Scholar]
  14. Patel B. K. C., Morgan H. W., Daniel R. M. 1985; Fervidobacterium nodosum gen. nov. and spec. nov., a new chemoorganotrophic, caldoactive, anaerobic bacterium. Arch Microbiol 141:63–69 [View Article]
    [Google Scholar]
  15. Podosokorskaya O. A., Merkel A. Y., Kolganova T. V., Chernyh N. A., Miroshnichenko M. L., Bonch-Osmolovskaya E. A., Kublanov I. V. 2011; Fervidobacterium riparium sp. nov., a thermophilic anaerobic cellulolytic bacterium isolated from a hot spring. Int J Syst Evol Microbiol 61:2697–2701 [View Article]
    [Google Scholar]
  16. Reysenbach A. L., Liu Y., Lindgren A. R., Wagner I. D., Sislak C. D., Mets A., Schouten S. 2013; Mesoaciditoga lauensis gen. nov., sp. nov., a moderately thermoacidophilic member of the order Thermotogales from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 63:4724–4729 [View Article][PubMed]
    [Google Scholar]
  17. Sasser M. 1990; Identification of bacteria by gas chromatography of cellular fatty acids. USFCC Newsl 20:1–6
    [Google Scholar]
  18. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S. 2013; mega6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729 [View Article][PubMed]
    [Google Scholar]
  19. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001463
Loading
/content/journal/ijsem/10.1099/ijsem.0.001463
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error