1887

Abstract

A bacterium designated as strain roo10 was isolated from roots of Jerusalem artichoke (). Cells were Gram-stain-negative and non-motile rods. The phylogenetic analysis of the 16S rRNA gene indicated that it represented a member of the genus , and its close relatives included JA40 (97.8 % 16S rRNA gene sequence similarity), 5GH38-5 (97.7 %) and TR6-08 (97.1 %). Growth of roo10 occurred at pH 7–9. The temperature for growth ranged from 20 to 37 °C. Tolerance to NaCl was observed from 0.005 to 5 % (w/v) concentration. Predominant fatty acids were iso-C (23.5 %), iso-C (18.9 %) and anteiso-C (11.5 %). Diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and phosphatidyl--methylethanolamine were the major polar lipids. The predominant quinone was ubiquinone 8 (Q-8). The DNA G+C content was 65.7 mol% [from melting temperature ()]. Comparison of phenotypic and chemotaxonomic characteristics indicated that roo10 was distinguishable from its close relatives. Additionally, the DNA–DNA relatedness levels between roo10 and DSM 18571 (22±0.5 %), 5GH38-5 (21±0.2 %) and DSM 17801 (3±1 %) were lower than 70 %. These results indicated that roo10 represented a novel species of the genus , for which the name sp. nov. is proposed. The type strain is roo10 (=BCC 70700=NBRC 110414).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001465
2016-12-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/12/5034.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001465&mimeType=html&fmt=ahah

References

  1. Araújo W. L., Marcon J., Maccheroni W. Jr., Van Elsas J. D., Van Vuurde J. W., Azevedo J. L. 2002; Diversity of endophytic bacterial populations and their interaction with Xylella fastidiosa in citrus plants. Appl Environ Microbiol 68:4906–4914 [View Article][PubMed]
    [Google Scholar]
  2. Atlas R., Snyder J. 2011 Reagents, Stains and Media: Bacteriology pp. 272–303 Edited by Versalovic J., Carroll K., Funke G., Jorgensen J., Landry M., Warnock D. Washington, DC: ASM press;
    [Google Scholar]
  3. Chang J. S., Chou C. L., Lin G. H., Sheu S. Y., Chen W. M. 2005; Pseudoxanthomonas Kaohsiungensis, sp. nov., a novel bacterium isolated from oil-polluted site produces extracellular surface activity. Syst Appl Microbiol 28:137–144 [View Article][PubMed]
    [Google Scholar]
  4. Chen M. Y., Tsay S. S., Chen K. Y., Shi Y. C., Lin Y. T., Lin G. H. 2002; Pseudoxanthomonas taiwanensis sp. nov., a novel thermophilic, N2O-producing species isolated from hot springs. Int J Syst Evol Microbiol 52:2155–2211 [View Article][PubMed]
    [Google Scholar]
  5. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid–deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229 [View Article]
    [Google Scholar]
  6. Felsenstein J. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376 [View Article][PubMed]
    [Google Scholar]
  7. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [View Article]
    [Google Scholar]
  8. Finkmann W., Altendorf K., Stackebrandt E., Lipski A. 2000; Characterization of N2O-producing Xanthomonas-like isolates from biofilters as Stenotrophomonas nitritireducens sp. nov., Luteimonas mephitis gen. nov., sp. nov. and Pseudoxanthomonas broegbernensis gen. nov., sp. nov. Int J Syst Evol Microbiol 50:273–282 [View Article][PubMed]
    [Google Scholar]
  9. Fitch W. M. 1971; Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416 [View Article]
    [Google Scholar]
  10. Gomori G. 1955; Preparation of buffers for use in enzyme studies. Methods Enzymol 1:138–146 [CrossRef]
    [Google Scholar]
  11. Kämpfer P., Kroppenstedt R. M. 1996; Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 42:989–1005 [View Article]
    [Google Scholar]
  12. Kilburn J. O., O'Donnell K. F., Silcox V. A., David H. L. 1973; Preparation of a stable mycobacterial Tween hydrolysis test substrate. Appl Microbiol 26:826[PubMed]
    [Google Scholar]
  13. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H. et al. 2012; Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721 [View Article][PubMed]
    [Google Scholar]
  14. Kim S. J., Ahn J. H., Weon H. Y., Lim J. M., Kim S. G., Kwon S. W. 2015; Pseudoxanthomonas sangjuensis sp. nov., isolated from greenhouse soil. Int J Syst Evol Microbiol 65:3170–3174 [View Article][PubMed]
    [Google Scholar]
  15. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [View Article][PubMed]
    [Google Scholar]
  16. Komagata K., Suzuki K. 1987 Lipid and Cell-Wall Analysis in Bacterial Systematics pp. 161–208 Edited by Colwell R. R., Grigorova R. Orlando: Academic Press;
    [Google Scholar]
  17. Kumari K., Sharma P., Tyagi K., Lal R. 2011; Pseudoxanthomonas indica sp. nov., isolated from a hexachlorocyclohexane dumpsite. Int J Syst Evol Microbiol 61:2107–2111 [View Article][PubMed]
    [Google Scholar]
  18. Lane D. J. 1991; 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics pp. 115–175 Edited by Stackebrandt E., Goodfellow M. Chichester: Wiley & Sons;
    [Google Scholar]
  19. Lee D. S., Ryu S. H., Hwang H. W., Kim Y. J., Park M., Lee J. R., Lee S. S., Jeon C. O. 2008; Pseudoxanthomonas sacheonensis sp. nov., isolated from BTEX-contaminated soil in Korea, transfer of Stenotrophomonas dokdonensis Yoon et al. 2006 to the genus Pseudoxanthomonas as Pseudoxanthomonas dokdonensis comb. nov. and emended description of the genus Pseudoxanthomonas . Int J Syst Evol Microbiol 58:2235–2240 [View Article][PubMed]
    [Google Scholar]
  20. Li D., Pang H., Sun L., Fan J., Li Y., Zhang J. 2014; Pseudoxanthomonas wuyuanensis sp. nov., isolated from saline–alkali soil. Int J Syst Evol Microbiol 64:799–804 [View Article][PubMed]
    [Google Scholar]
  21. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 3:208–218 [View Article]
    [Google Scholar]
  22. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [View Article]
    [Google Scholar]
  23. Minnikin D. E., O'Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H. 1984; An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241 [View Article]
    [Google Scholar]
  24. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425[PubMed]
    [Google Scholar]
  25. Sasser M. 1990 Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids MIDI Technical Note 101 Newark, DE: MIDI Inc;
    [Google Scholar]
  26. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S. 2013; mega6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729 [View Article][PubMed]
    [Google Scholar]
  27. Thierry S., Macarie H., Iizuka T., Geissdörfer W., Assih E. A., Spanevello M., Verhe F., Thomas P., Fudou R. et al. 2004; Pseudoxanthomonas mexicana sp. nov. and Pseudoxanthomonas japonensis sp. nov., isolated from diverse environments, and emended descriptions of the genus Pseudoxanthomonas Finkmann et al. 2000 and of its type species. Int J Syst Evol Microbiol 54:2245–2255 [View Article][PubMed]
    [Google Scholar]
  28. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [View Article][PubMed]
    [Google Scholar]
  29. Verlander C. P. 1992; Detection of horseradish peroxidase by colorimetry. In Nonisotopic DNA Probe Techniques pp. 185–201 Edited by Kricka L. J. New York: Academic Press; [CrossRef]
    [Google Scholar]
  30. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. et al. 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
  31. Zhang L., Wei L., Zhu L., Li C., Wang Y., Shen X. 2014; Pseudoxanthomonas gei sp. nov., a novel endophytic bacterium isolated from the stem of Geum aleppicum . Antonie van Leeuwenhoek 105:653–661 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001465
Loading
/content/journal/ijsem/10.1099/ijsem.0.001465
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error