1887

Abstract

A novel bacterium, CAI-18b, was isolated from a bioreactor that treated landfill leachate using an oligotrophic growth medium. Phylogenetic analysis based on the 16S rRNA gene sequence revealed that strain CAI-18b is a member of the genus , showing 97.1 % pairwise similarity to H359, 96.4 % to 1351, 96.4 % to MDT1-10-3 and 96.0 % to MCC P1. Strain CAI-18b was rod-shaped, motile, oxidase- and catalase-positive. The predominant fatty acids were iso-C (24.1 %) and iso-C I (22.3 %), the major respiratory quinone was MK-7, and the predominant polar lipids were phosphatidylethanolamine and an unknown aminophospholipid. The G+C content of the genomic DNA of strain CAI-18b was 50.7 mol%. The novel bacterium can be distinguished from related type strains based on its ability to assimilate -acetylglucosamine and gentiobiose. On the basis of the phenotypic, chemotaxonomic and molecular data, strain CAI-18b represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is CAI-18b (=DSM 29854=NCAIM B.02614).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001488
2016-12-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/12/5150.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001488&mimeType=html&fmt=ahah

References

  1. Abaydulla G., Luo X., Shi J., Peng F., Liu M., Wang Y., Dai J., Fang C. 2012; Rufibacter tibetensis gen. nov., sp. nov., a novel member of the family Cytophagaceae isolated from soil. Antonie Van Leeuwenhoek 101:725–731 [View Article][PubMed]
    [Google Scholar]
  2. Barrow G. I., Feltham R. K. A. 2004 Cowan and Steel’s Manual for the Identification of Medical Bacteria, 3rd edn. Cambridge: Cambridge University Press;
    [Google Scholar]
  3. Claus D. 1992; A standardized Gram staining procedure. World J Microbiol Biotechnol 8:451–452 [View Article][PubMed]
    [Google Scholar]
  4. Felföldi T., Kéki Z., Sipos R., Márialigeti K., Tindall B. J., Schumann P., Tóth E. M. 2011; Ottowia pentelensis sp. nov., a floc-forming betaproteobacterium isolated from an activated sludge system treating coke plant effluent. Int J Syst Evol Microbiol 61:2146–2150 [View Article][PubMed]
    [Google Scholar]
  5. Felföldi T., Vengring A., Kéki Z., Márialigeti K., Schumann P., Tóth E. M. 2014; Eoetvoesia caeni gen. nov., sp. nov., isolated from an activated sludge system treating coke plant effluent. Int J Syst Evol Microbiol 64:1920–1925 [View Article][PubMed]
    [Google Scholar]
  6. Felföldi T., Kovács E., Fikó D. R., Tankó G., Szabó A., Nagymáté Z., Szilveszter S., Máthé I. 2015; Unconventional strategies for the cultivation of new bacterial strains from aquatic environments. Acta Microbiol Immunol Hung 62:150–151
    [Google Scholar]
  7. Hugh R., Leifson E. 1953; The taxonomic significance of fermentative versus oxidative metabolism of carbohydrates by various Gram negative bacteria. J Bacteriol 66:24–26[PubMed]
    [Google Scholar]
  8. Kang J. Y., Chun J., Jahng K. Y. 2013; Nibribacter koreensis gen. nov., sp. nov., isolated from estuarine water. Int J Syst Evol Microbiol 63:4663–4668 [View Article][PubMed]
    [Google Scholar]
  9. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H. et al. 2012; Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721 [View Article][PubMed]
    [Google Scholar]
  10. Kirchman D. L. 2002; The ecology of Cytophaga-Flavobacteria in aquatic environments. FEMS Microbiol Ecol 39:91–100 [View Article][PubMed]
    [Google Scholar]
  11. Liu Q., Liu H. C., Zhang J. L., Zhou Y. G., Xin Y. H. 2016; Rufibacter glacialis sp. nov., a psychrotolerant bacterium isolated from glacier soil. Int J Syst Evol Microbiol 66:315–318 [View Article][PubMed]
    [Google Scholar]
  12. Máthé I., Borsodi A. K., Tóth E. M., Felföldi T., Jurecska L., Krett G., Kelemen Z., Elekes E., Barkács K., Márialigeti K. 2014; Vertical physico-chemical gradients with distinct microbial communities in the hypersaline and heliothermal Lake Ursu (Sovata, Romania). Extremophiles 18:501–514 [View Article][PubMed]
    [Google Scholar]
  13. McBride M. J., Liu W., Lu X., Zhu Y., Zhang W. 2014; The family Cytophagaceae . In The Prokaryotes - Other Major Lineages of Bacteria and The Archaea pp 577–593 Edited by Rosenberg E., DeLong E. F., Lory S., Stackebrandt E., Thompson F. Berlin: Springer;
    [Google Scholar]
  14. Mesbah N. M., Whitman W. B., Mesbah M. 2011; Determination of the G+C content of Prokaryotes. Methods Microbiol 38:299–324 [CrossRef]
    [Google Scholar]
  15. Munoz R., Rosselló-Móra R., Amann R. 2016; Revised phylogeny of Bacteroidetes and proposal of sixteen new taxa and two new combinations including Rhodothermaeota phyl. nov. Syst Appl Microbiol 39:281–296 [View Article][PubMed]
    [Google Scholar]
  16. Parte A. C. 2014; LPSN-list of prokaryotic names with standing in nomenclature. Nucleic Acids Res 42:D613–D616 [View Article][PubMed]
    [Google Scholar]
  17. Polkade A. V., Ramana V. V., Joshi A., Pardesi L., Shouche Y. S. 2015; Rufibacter immobilis sp. nov., isolated from a high-altitude saline lake. Int J Syst Evol Microbiol 65:1592–1597 [View Article][PubMed]
    [Google Scholar]
  18. Pruesse E., Peplies J., Glöckner F. O. 2012; SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 28:1823–1829 [View Article][PubMed]
    [Google Scholar]
  19. Smibert R. M., Krieg N. R. 1994; Phenotypic characterization. In Methods for General and Molecular Bacteriology pp. 607–654 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  20. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S. 2013; mega6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729 [View Article][PubMed]
    [Google Scholar]
  21. Tarrand J. J., Gröschel D. H. 1982; Rapid, modified oxidase test for oxidase-variable bacterial isolates. J Clin Microbiol 16:772–774[PubMed]
    [Google Scholar]
  22. Thomas F., Hehemann J.-H., Rebuffet E., Czjzek M., Michel G. 2011; Environmental and gut Bacteroidetes: the food connection. Front Microbiol 2:93 [View Article][PubMed]
    [Google Scholar]
  23. Zhang Z., Schwartz S., Wagner L., Miller W. 2000; A greedy algorithm for aligning DNA sequences. J Comput Biol 7:203–214 [View Article][PubMed]
    [Google Scholar]
  24. Zhang Z. D., Gu M. Y., Zhu J., Li S. H., Zhang L. J., Xie Y. Q., Shi Y. H., Wang W., Li W. J. 2015; Rufibacter roseus sp. nov., isolated from radiation-polluted soil. Int J Syst Evol Microbiol 65:1572–1577 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001488
Loading
/content/journal/ijsem/10.1099/ijsem.0.001488
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error