1887

Abstract

A novel, halophilic, motile, rod-shaped, Gram-staining-negative and non-endospore forming bacterium, designated Cs25, was isolated from the rhizosphere of the halophyte growing in a tidal flat. Strain Cs25 was observed to be catalase-negative and oxidase-positive, and to hydrolyse hypoxanthine. Growth occurred from 15 to 40 °C, at pH 7.0−10.0 and with 1−11 % (w/v) NaCl. Q-10 was identified as the dominant ubiquinone, and the major cellular fatty acids were C 7, 11-methyl Cω7, Cω7 and C The polar lipids comprised phosphatidylmonomethylethanolamine, phosphatidylcholine, sulphoquinovosyldiacylglyceride, diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. The 16S rRNA gene showed 99.19, 98.6 and 98.59 % sequence identity with DSM 18320, DSM 13394 and DSM 17023, respectively. Based on the phenotypic and molecular features and DNA–DNA hybridization data, it is concluded that strain Cs25 represents a novel species for which the name sp. nov. is proposed. The type strain is Cs25 (=DSM 29163=CECT 8816).

Keyword(s): Labrenzia , rhizosphere and taxonomy
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001492
2016-12-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/12/5173.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001492&mimeType=html&fmt=ahah

References

  1. Ahrens R. 1968; Taxonomische Untersuchungen an sternbildenden Agrobacterium-Arten aus der westlichen Ostsee [Taxonomic research on star-forming species of Agrobacterium in the western part of the Baltic Sea]. Kiel Meeresforsch 24:147–173
    [Google Scholar]
  2. Bibi F., Jeong J. H., Chung E. J., Jeon C. O., Chung Y. R. 2014; Labrenzia suaedae sp. nov., a marine bacterium isolated from a halophyte, and emended description of the genus Labrenzia . Int J Syst Evol Microbiol 64:1116–1122 [View Article][PubMed]
    [Google Scholar]
  3. Biebl H., Pukall R., Lünsdorf H., Schulz S., Allgaier M., Tindall B. J., Wagner-Döbler I. 2007; Description of Labrenzia alexandrii gen. nov., sp. nov., a novel alphaproteobacterium containing bacteriochlorophyll a, and a proposal for reclassification of Stappia aggregate as Labrenzia aggregata comb. nov., of Stappia marina as Labrenzia marina comb. nov. and of Stappia alba as Labrenzia alba comb. nov., and emended descriptions of the genera Pannonibacter, Stappia and Roseibium, and of the species Roseibium denhamense and Roseibium hamelinense . Int J Syst Evol Microbiol 57:1095–1107 [CrossRef]
    [Google Scholar]
  4. Bligh E. G., Dyer W. J. 1959; A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917 [View Article][PubMed]
    [Google Scholar]
  5. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142 [View Article][PubMed]
    [Google Scholar]
  6. El-Morsy M. H. M. 2010; Relative importance of salt marshes as range resources in the north western Mediterranean coast of Egypt. J Phytol 2:39–50
    [Google Scholar]
  7. Giovannoni S. J. 1991; The polymerase chain reaction. In Nucleic Acid Techniques in Bacterial Systematics pp. 175–203 Edited by Stackebrandt E., Goodfellow M. Chichester: John Wiley & Sons Ltd;
    [Google Scholar]
  8. Gregersen T. 1978; Rapid method for distinction of gram-negative from gram-positive bacteria. Eur J Clin Microbiol 5:123–127 [View Article]
    [Google Scholar]
  9. Halebian S., Harris B., Finegold S. M., Rolfe R. D. 1981; Rapid method that aids in distinguishing Gram-positive from Gram-negative anaerobic bacteria. J Clin Microbiol 13:444–448[PubMed]
    [Google Scholar]
  10. Hall T. A. 1999; BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98
    [Google Scholar]
  11. Huss V. A. R., Festl H., Schleifer K. H. 1983; Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4:184–192 [View Article][PubMed]
    [Google Scholar]
  12. Kim B. C., Park J. R., Bae J. W., Rhee S. K., Kim K. H., Oh J. W., Park Y. H. 2006; Stappia marina sp. nov., a marine bacterium isolated from the Yellow Sea. Int J Syst Evol Microbiol 56:75–79 [View Article][PubMed]
    [Google Scholar]
  13. King G. M. 2003; Molecular and culture-based analyses of aerobic carbon monoxide oxidizer diversity. Appl Environ Microbiol 69:7257–7265 [View Article][PubMed]
    [Google Scholar]
  14. Kroppenstedt R. M., Goodfellow M. 2006; The family Thermomonosporaceae: Actinocorallia, Actinomadura, Spirillispora and Thermomonospora . In The Prokaryotes, 3rd edn. pp 682–724 Edited by Dworkin M., Falkow S., Schleifer K. H., Stackebrandt E. New York: Springer; [CrossRef]
    [Google Scholar]
  15. Meier-Kolthoff J. P., Göker M., Spröer C., Klenk H. P. 2013; When should a DDH experiment be mandatory in microbial taxonomy?. Arch Microbiol 195:413–418 [View Article][PubMed]
    [Google Scholar]
  16. Mesbah M., Premachandran U., Whitman B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [View Article]
    [Google Scholar]
  17. Minnikin D. E., O'Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H. 1984; An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241 [View Article]
    [Google Scholar]
  18. Montero-Calasanz M. C., Göker M., Rohde M., Spröer C., Schumann P., Busse H. J., Schmid M., Tindall B. J., Klenk H. P. et al. 2013; Chryseobacterium hispalense sp. nov., a plant-growth-promoting bacterium isolated from a rainwater pond in an olive plant nursery, and emended descriptions of Chryseobacterium defluvii, Chryseobacterium indologenes, Chryseobacterium wanjuense and Chryseobacterium gregarium . Int J Syst Evol Microbiol 63:4386–4395 [View Article][PubMed]
    [Google Scholar]
  19. Montero-Calasanz M. C., Göker M., Rohde M., Spröer C., Schumann P., Busse H. J., Schmid M., Klenk H.-P., Tindall B. J. et al. 2014; Chryseobacterium oleae sp. nov., an efficient plant growth promoting bacterium in the rooting induction of olive tree (Olea europaea L.) cuttings and emended descriptions of the genus Chryseobacterium, C. daecheongense, C. gambrini, C. gleum, C. joostei, C. jejuense, C. luteum, C. shigense, C. taiwanense, C. ureilyticum and C. vrystaatense . Syst Appl Microbiol 37:342–350 [View Article][PubMed]
    [Google Scholar]
  20. Pelczar Jr. M. J. 1957 Manual of Microbiological Methods New York: McGraw-Hill Book Co;
    [Google Scholar]
  21. Pujalte M. J., Macián M. C., Arahal D. R., Garay E. 2005; Stappia alba sp. nov., isolated from Mediterranean oysters. Syst Appl Microbiol 28:672–678 [View Article][PubMed]
    [Google Scholar]
  22. Redondo-Gómez S., Mateos-Naranjo E., Figueroa M. E., Davy A. J. 2010; Salt stimulation of growth and photosynthesis in an extreme halophyte, Arthrocnemum macrostachyum . Plant Biol 12:79–87 [View Article][PubMed]
    [Google Scholar]
  23. Sasser M. 1990 Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc;
    [Google Scholar]
  24. Suzuki T., Muroga Y., Takahama M., Nishimura Y. 2000; Roseigium denhamense gen. nov., sp. nov. and Roseibium hamelinense sp. nov., aerobic bacteriochlorophyll-containing bacteria isolated from the east and west coasts of Australia. Int J Syst Evol Microbiol 50:2151–2156 [View Article][PubMed]
    [Google Scholar]
  25. Tamura K., Nei M. 1993; Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526[PubMed]
    [Google Scholar]
  26. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. 2011; mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739 [View Article][PubMed]
    [Google Scholar]
  27. Tindall B. J. 1990a; A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 13:128–130 [View Article]
    [Google Scholar]
  28. Tindall B. J. 1990b; Lipid composition of Halobacterium lacusprofundi . FEMS Microbiol Lett 66:199–202 [View Article]
    [Google Scholar]
  29. Tindall B. J., Sikorski J., Smibert R. M., Kreig N. R. 2007; Phenotypic characterization and the principles of comparative systematics. In Methods for General and Molecular Microbiology, 3rd edn. pp 330–393 Edited by Reddy C. A., Beveridge T. J., Breznak J. A., Marzluf G., Schmidt T. M., Snyder L. R. Washington, DC: ASM Press;
    [Google Scholar]
  30. Uchino Y., Hirata A., Yokota A., Sugiyama J. 1998; Reclassification of marine Agrobacterium species: proposals of Stappia stellulata gen. nov., comb. nov., Stappia aggregata sp. nov., nom. rev., Ruegeria atlantica gen. nov., comb. nov., Ruegeria gelatinovora comb. nov., Ruegeria algicola comb. nov., and Ahrensia kieliense gen. nov., sp. nov., nom. rev. J Gen Appl Microbiol 44:201–210 [View Article][PubMed]
    [Google Scholar]
  31. Vaas L. A., Sikorski J., Michael V., Göker M., Klenk H. P. 2012; Visualization and curve-parameter estimation strategies for efficient exploration of phenotype microarray kinetics. PLoS One 7:e34846 [View Article][PubMed]
    [Google Scholar]
  32. Vaas L. A., Sikorski J., Hofner B., Fiebig A., Buddruhs N., Klenk H. P., Göker M. 2013; opm: an R package for analysing OmniLog(R) phenotype microarray data. Bioinformatics 29:1823–1824 [View Article][PubMed]
    [Google Scholar]
  33. Vincent J. M. 1970 A Manual for the Practical Study of Root-Nodule Bacteria Oxford: Blackwell Scientific Publications;
    [Google Scholar]
  34. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Moore R. G. E. et al. 1987; Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 37:463–464 [CrossRef]
    [Google Scholar]
  35. Zhong Z. P., Liu Y., Liu H. C., Wang F., Zhou Y. G., Liu Z. P. 2014; Roseibium aquae sp. nov., isolated from a saline lake. Int J Syst Evol Microbiol 64:2812–2818 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001492
Loading
/content/journal/ijsem/10.1099/ijsem.0.001492
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error