1887

Abstract

A Gram-stain-negative, smooth, bright-yellow-pigmented, rod-shaped bacterial strain, slightly motile by gliding, catalase- and oxidase-positive and aerobic, but growing weakly under anaerobic conditions, was isolated from the rhizosphere of the flower mugunghwa ( L.) located in Kyung Hee University, Yongin, Gyeonggi, South Korea. The strain named THG-HG1.4 grew at 15–35 °C, pH 6.5–9.0 and in the presence of 0–2.5 % (w/v) NaCl. The phylogenetic analysis based on 16S rRNA gene sequence showed that strain THG-HG1.4 was most closely related to HME7524 (98.83 %) and S2-3H (97.28 %). The DNA G+C content of strain THG-HG1.4 was 41.2 mol%. In DNA–DNA hybridization, the DNA–DNA relatedness between strain THG-HG1.4 and its closest phylogenetic neighbour was below 64.1 %. The predominant isoprenoid quinone detected in strain THG-HG1.4 was menaquinone-6 (MK-6). The major polar lipids were found to be phosphatidylethanolamine, three unidentified lipids, two unidentified glycolipids and an unidentified aminolipid. The major fatty acids were identified as iso-C, iso-C 3-OH, C, iso-C 3-OH and summed feature 3. Thus, based on the report of the phenotypic, genotypic and phylogenetic characterization of strain THG-HG1.4, it has been concluded that the novel isolate represents a novel species of the genus sp. nov. is proposed, with THG-HG1.4 (=KACC 18852=CCTCC AB 2016178) as the type strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001610
2017-03-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/3/537.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001610&mimeType=html&fmt=ahah

References

  1. Bergey DH, Harrison FC, Breed RS, Hammer BW, Huntoon FM et al. Genus II. Flavobacterium gen. nov. In Bergey’s Manual of Determinative Bacteriology, 1st ed. Baltimore: Williams & Wilkins; 1923 pp. 97–117
    [Google Scholar]
  2. Bernardet J-F, Segers P, Vancanneyt M, Berthe F, Kersters K et al. Cutting a gordian knot: emended classification and description of the genus Flavobacterium, emended description of the family Flavobacteriaceae, and proposal of Flavobacterium hydatis nom. nov. (basonym, Cytophaga aquatilis strohl and tait 1978). Int J Syst Bacteriol 1996; 46:128–148 [View Article]
    [Google Scholar]
  3. Dong K, Chen F, du Y, Wang G. Flavobacterium enshiense sp. nov., isolated from soil, and emended descriptions of the genus Flavobacterium and Flavobacterium cauense, Flavobacterium saliperosum and Flavobacterium suncheonense. Int J Syst Evol Microbiol 2013; 63:886–892 [View Article][PubMed]
    [Google Scholar]
  4. Kang JY, Chun J, Jahng KY. Flavobacterium aciduliphilum sp. nov., isolated from freshwater, and emended description of the genus Flavobacterium. Int J Syst Evol Microbiol 2013; 63:1633–1638 [View Article][PubMed]
    [Google Scholar]
  5. Kuo I, Saw J, Kapan DD, Christensen S, Kaneshiro KY et al. Flavobacterium akiainvivens sp. nov., from decaying wood of Wikstroemia oahuensis, Hawai'i, and emended description of the genus Flavobacterium. Int J Syst Evol Microbiol 2013; 63:3280–3286 [View Article][PubMed]
    [Google Scholar]
  6. Liu H, Liu R, Yang SY, Gao WK, Zhang CX et al. Flavobacterium anhuiense sp. nov., isolated from field soil. Int J Syst Evol Microbiol 2008; 58:756–760 [View Article][PubMed]
    [Google Scholar]
  7. Kim YJ, Kim SR, Nguyen NL, Yang DC. Flavobacterium ginsengisoli sp. nov., isolated from soil of a ginseng field. Int J Syst Evol Microbiol 2013; 63:4289–4293 [View Article][PubMed]
    [Google Scholar]
  8. Yang JE, Kim SY, Im WT, Yi TH. Flavobacterium ginsenosidimutans sp. nov., a bacterium with ginsenoside converting activity isolated from soil of a ginseng field. Int J Syst Evol Microbiol 2011; 61:1408–1412 [View Article][PubMed]
    [Google Scholar]
  9. Kacagan M, Inan K, Belduz AO, Canakci S. Flavobacterium anatoliense sp. nov., isolated from fresh water, and emended description of Flavobacterium ceti. Int J Syst Evol Microbiol 2013; 63:2075–2081 [View Article][PubMed]
    [Google Scholar]
  10. Sheu SY, Lin YS, Chen WM. Flavobacterium squillarum sp. nov., isolated from a freshwater shrimp culture pond, and emended descriptions of Flavobacterium haoranii, Flavobacterium cauense, Flavobacterium terrae and Flavobacterium aquatile. Int J Syst Evol Microbiol 2013; 63:2239–2247 [View Article][PubMed]
    [Google Scholar]
  11. Subhash Y, Sasikala C, Ramana C. Flavobacterium aquaticum sp. nov., isolated from a water sample of a rice field. Int J Syst Evol Microbiol 2013; 63:3463–3469 [View Article][PubMed]
    [Google Scholar]
  12. Lee S, Weon HY, Han K, Ahn TY. Flavobacterium dankookense sp. nov., isolated from a freshwater reservoir, and emended descriptions of Flavobacterium cheonanense, F. chungnamense, F. koreense and F. aquatile. Int J Syst Evol Microbiol 2012; 62:2378–2382 [View Article][PubMed]
    [Google Scholar]
  13. Yi H, Oh HM, Lee JH, Kim SJ, Chun J. Flavobacterium antarcticum sp. nov., a novel psychrotolerant bacterium isolated from the Antarctic. Int J Syst Evol Microbiol 2005; 55:637–641 [View Article][PubMed]
    [Google Scholar]
  14. Kämpfer P, Lodders N, Martin K, Avendaño-Herrera R. Flavobacterium chilense sp. nov. and Flavobacterium araucananum sp. nov., isolated from farmed salmonid fish. Int J Syst Evol Microbiol 2012; 62:1402–1408 [View Article][PubMed]
    [Google Scholar]
  15. Fu Y, Tang X, Lai Q, Zhang C, Zhong H et al. Flavobacterium beibuense sp. nov., isolated from marine sediment. Int J Syst Evol Microbiol 2011; 61:205–209 [View Article][PubMed]
    [Google Scholar]
  16. Bernardet JF, Bowman JP. The genus Flavobacterium. In Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E. (editors) The Prokaryotes, 3rd ed. vol. 7 New York: Springer; 2006 pp. 481–531 [CrossRef]
    [Google Scholar]
  17. Bernardet JF, Bowman JP. Genus I. Flavobacterium Bergey, et al. 1923, 97AL. In Krieg NR, Staley JT, Brown DR, Hedlund BP, Paster BJ. et al (editors) Bergey’s Manual of Systematic Bacteriology, 2nd ed. vol. 4 New York: Springer; 2011 pp. 112–154
    [Google Scholar]
  18. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 1991; 173:697–703[PubMed] [CrossRef]
    [Google Scholar]
  19. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012; 62:716–721 [View Article][PubMed]
    [Google Scholar]
  20. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25:4876–4882[PubMed] [CrossRef]
    [Google Scholar]
  21. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 1999; 41:95–98
    [Google Scholar]
  22. Kimura M. The Neutral Theory of Molecular Evolution Cambridge: Cambridge University Press; 1983 [CrossRef]
    [Google Scholar]
  23. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Bio Evol 1987; 4:406–425
    [Google Scholar]
  24. Tamura K, Peterson D, Peterson N, Stecher G, Nei M et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011; 28:2731–2739 [View Article][PubMed]
    [Google Scholar]
  25. Felsenstein J. Confidence limit on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article]
    [Google Scholar]
  26. Fautz E, Reichenbach H. A simple test for flexirubin-type pigments. FEMS Microbiol Lett 1980; 8:87–91 [View Article]
    [Google Scholar]
  27. Kim H, Kang H, Joung Y, Joh K. Flavobacterium gyeonganense sp. nov., isolated from freshwater, and emended descriptions of Flavobacterium chungangense, Flavobacterium aquidurense, Flavobacterium tructae and Flavobacterium granuli. Int J Syst Evol Microbiol 2014; 64:4173–4178 [View Article][PubMed]
    [Google Scholar]
  28. Khianngam S, Akaracharanya A, Lee JS, Lee KC, Kim KW et al. Flavobacterium arsenitoxidans sp. nov., an arsenite-oxidizing bacterium from Thai soil. Antonie van Leeuwenhoek 2014; 106:1239–1246 [View Article][PubMed]
    [Google Scholar]
  29. Moore DD, Dowhan D. Preparation and analysis of DNA. In Ausubel FW, Brent R, Kingston RE, Moore DD, Seidman JG. et al (editors) Current Protocols in Molecular Biology New York: Wiley; 1995 pp. 2–11
    [Google Scholar]
  30. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989; 39:159–167 [View Article]
    [Google Scholar]
  31. Ezaki T, Hashimoto Y, Yabuuchi E. Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 1989; 39:224–229 [CrossRef]
    [Google Scholar]
  32. Gillis M, de Ley J, de Cleene M. The determination of molecular weight of bacterial genome DNA from renaturation rates. Eur J Biochem 1970; 12:143–153[PubMed] [CrossRef]
    [Google Scholar]
  33. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 1987; 37:463–464 [CrossRef]
    [Google Scholar]
  34. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids MIDI Technical Note 101 Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  35. Minnikin DE, Patel PV, Alshamaony L, Goodfellow M. Polar lipid composition in the classification of Nocardia and related bacteria. Int J Syst Bacteriol 1977; 27:104–117 [View Article]
    [Google Scholar]
  36. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  37. Hiraishi A, Ueda Y, Ishihara J, Mori T. Comparative lipoquinone analysis of influent sewage and activated sludge by high-performance liquid chromatography and photodiode array detection. J Gen Appl Microbiol 1996; 42:457–469 [View Article]
    [Google Scholar]
  38. Collins MD, Jones D. Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication. Microbiol Rev 1981; 45:316–354[PubMed]
    [Google Scholar]
  39. Tamaoka J, Katayama-Fujimura Y, Kuraishi H. Analysis of bacterial menaquinone mixtures by high performance liquid chromatography. J Appl Bacteriol 1983; 54:31–36 [View Article]
    [Google Scholar]
  40. Busse J, Auling G. Polyamine pattern as a chemotaxonomic marker within the proteobacteria. Syst Appl Microbiol 1988; 11:1–8 [View Article]
    [Google Scholar]
  41. Taibi G, Schiavo MR, Gueli MC, Rindina PC, Muratore R et al. Rapid and simultaneous high-performance liquid chromatography assay of polyamines and monoacetylpolyamines in biological specimens. J Chromatogr B Biomed Sci Appl 2000; 745:431–437[PubMed] [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001610
Loading
/content/journal/ijsem/10.1099/ijsem.0.001610
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error